-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathproject.rs
838 lines (747 loc) · 31.3 KB
/
project.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
//! Manages compiling of a `Project`
//!
//! The compilation of a project is performed in several steps.
//!
//! First the project's dependency graph [`crate::Graph`] is constructed and all imported
//! dependencies are resolved. The graph holds all the relationships between the files and their
//! versions. From there the appropriate version set is derived
//! [`crate::Graph`] which need to be compiled with different
//! [`crate::Solc`] versions.
//!
//! At this point we check if we need to compile a source file or whether we can reuse an _existing_
//! `Artifact`. We don't to compile if:
//! - caching is enabled
//! - the file is **not** dirty
//! - the artifact for that file exists
//!
//! This concludes the preprocessing, and we now have either
//! - only `Source` files that need to be compiled
//! - only cached `Artifacts`, compilation can be skipped. This is considered an unchanged,
//! cached project
//! - Mix of both `Source` and `Artifacts`, only the `Source` files need to be compiled, the
//! `Artifacts` can be reused.
//!
//! The final step is invoking `Solc` via the standard JSON format.
//!
//! ### Notes on [Import Path Resolution](https://docs.soliditylang.org/en/develop/path-resolution.html#path-resolution)
//!
//! In order to be able to support reproducible builds on all platforms, the Solidity compiler has
//! to abstract away the details of the filesystem where source files are stored. Paths used in
//! imports must work the same way everywhere while the command-line interface must be able to work
//! with platform-specific paths to provide good user experience. This section aims to explain in
//! detail how Solidity reconciles these requirements.
//!
//! The compiler maintains an internal database (virtual filesystem or VFS for short) where each
//! source unit is assigned a unique source unit name which is an opaque and unstructured
//! identifier. When you use the import statement, you specify an import path that references a
//! source unit name. If the compiler does not find any source unit name matching the import path in
//! the VFS, it invokes the callback, which is responsible for obtaining the source code to be
//! placed under that name.
//!
//! This becomes relevant when dealing with resolved imports
//!
//! #### Relative Imports
//!
//! ```solidity
//! import "./math/math.sol";
//! import "contracts/tokens/token.sol";
//! ```
//! In the above `./math/math.sol` and `contracts/tokens/token.sol` are import paths while the
//! source unit names they translate to are `contracts/math/math.sol` and
//! `contracts/tokens/token.sol` respectively.
//!
//! #### Direct Imports
//!
//! An import that does not start with `./` or `../` is a direct import.
//!
//! ```solidity
//! import "/project/lib/util.sol"; // source unit name: /project/lib/util.sol
//! import "lib/util.sol"; // source unit name: lib/util.sol
//! import "@openzeppelin/address.sol"; // source unit name: @openzeppelin/address.sol
//! import "https://example.com/token.sol"; // source unit name: <https://example.com/token.sol>
//! ```
//!
//! After applying any import remappings the import path simply becomes the source unit name.
//!
//! ##### Import Remapping
//!
//! ```solidity
//! import "github.com/ethereum/dapp-bin/library/math.sol"; // source unit name: dapp-bin/library/math.sol
//! ```
//!
//! If compiled with `solc github.com/ethereum/dapp-bin/=dapp-bin/` the compiler will look for the
//! file in the VFS under `dapp-bin/library/math.sol`. If the file is not available there, the
//! source unit name will be passed to the Host Filesystem Loader, which will then look in
//! `/project/dapp-bin/library/iterable_mapping.sol`
//!
//!
//! ### Caching and Change detection
//!
//! If caching is enabled in the [Project] a cache file will be created upon a successful solc
//! build. The [cache file](crate::cache::SolFilesCache) stores metadata for all the files that were
//! provided to solc.
//! For every file the cache file contains a dedicated [cache entry](crate::cache::CacheEntry),
//! which represents the state of the file. A solidity file can contain several contracts, for every
//! contract a separate [artifact](crate::Artifact) is emitted. Therefor the entry also tracks all
//! artifacts emitted by a file. A solidity file can also be compiled with several solc versions.
//!
//! For example in `A(<=0.8.10) imports C(>0.4.0)` and
//! `B(0.8.11) imports C(>0.4.0)`, both `A` and `B` import `C` but there's no solc version that's
//! compatible with `A` and `B`, in which case two sets are compiled: [`A`, `C`] and [`B`, `C`].
//! This is reflected in the cache entry which tracks the file's artifacts by version.
//!
//! The cache makes it possible to detect changes during recompilation, so that only the changed,
//! dirty, files need to be passed to solc. A file will be considered as dirty if:
//! - the file is new, not included in the existing cache
//! - the file was modified since the last compiler run, detected by comparing content hashes
//! - any of the imported files is dirty
//! - the file's artifacts don't exist, were deleted.
//!
//! Recompiling a project with cache enabled detects all files that meet these criteria and provides
//! solc with only these dirty files instead of the entire source set.
use crate::{
artifact_output::Artifacts,
artifacts::{Settings, VersionedFilteredSources, VersionedSources},
buildinfo::RawBuildInfo,
cache::ArtifactsCache,
error::Result,
filter::SparseOutputFilter,
output::AggregatedCompilerOutput,
report,
resolver::GraphEdges,
ArtifactOutput, CompilerInput, Graph, Project, ProjectCompileOutput, ProjectPathsConfig, Solc,
Sources,
};
use rayon::prelude::*;
use std::{collections::btree_map::BTreeMap, path::PathBuf, time::Instant};
use tracing::trace;
#[derive(Debug)]
pub struct ProjectCompiler<'a, T: ArtifactOutput> {
/// Contains the relationship of the source files and their imports
edges: GraphEdges,
project: &'a Project<T>,
/// how to compile all the sources
sources: CompilerSources,
/// How to select solc [`crate::artifacts::CompilerOutput`] for files
sparse_output: SparseOutputFilter,
}
impl<'a, T: ArtifactOutput> ProjectCompiler<'a, T> {
/// Create a new `ProjectCompiler` to bootstrap the compilation process of the project's
/// sources.
///
/// # Example
///
/// ```no_run
/// use foundry_compilers::Project;
///
/// let project = Project::builder().build().unwrap();
/// let output = project.compile().unwrap();
/// ```
#[cfg(all(feature = "svm-solc", not(target_arch = "wasm32")))]
pub fn new(project: &'a Project<T>) -> Result<Self> {
Self::with_sources(project, project.paths.read_input_files()?)
}
/// Bootstraps the compilation process by resolving the dependency graph of all sources and the
/// appropriate `Solc` -> `Sources` set as well as the compile mode to use (parallel,
/// sequential)
///
/// Multiple (`Solc` -> `Sources`) pairs can be compiled in parallel if the `Project` allows
/// multiple `jobs`, see [`crate::Project::set_solc_jobs()`].
#[cfg(all(feature = "svm-solc", not(target_arch = "wasm32")))]
pub fn with_sources(project: &'a Project<T>, sources: Sources) -> Result<Self> {
let graph = Graph::resolve_sources(&project.paths, sources)?;
let (versions, edges) = graph.into_sources_by_version(project.offline)?;
let sources_by_version = versions.get(project)?;
let sources = if project.solc_jobs > 1 && sources_by_version.len() > 1 {
// if there are multiple different versions, and we can use multiple jobs we can compile
// them in parallel
CompilerSources::Parallel(sources_by_version, project.solc_jobs)
} else {
CompilerSources::Sequential(sources_by_version)
};
Ok(Self { edges, project, sources, sparse_output: Default::default() })
}
/// Compiles the sources with a pinned `Solc` instance
pub fn with_sources_and_solc(
project: &'a Project<T>,
sources: Sources,
solc: Solc,
) -> Result<Self> {
let version = solc.version()?;
let (sources, edges) = Graph::resolve_sources(&project.paths, sources)?.into_sources();
// make sure `solc` has all required arguments
let solc = project.configure_solc_with_version(
solc,
Some(version.clone()),
edges.include_paths().clone(),
);
let sources_by_version = BTreeMap::from([(solc, (version, sources))]);
let sources = CompilerSources::Sequential(sources_by_version);
Ok(Self { edges, project, sources, sparse_output: Default::default() })
}
/// Applies the specified filter to be applied when selecting solc output for
/// specific files to be compiled
pub fn with_sparse_output(mut self, sparse_output: impl Into<SparseOutputFilter>) -> Self {
self.sparse_output = sparse_output.into();
self
}
/// Compiles all the sources of the `Project` in the appropriate mode
///
/// If caching is enabled, the sources are filtered and only _dirty_ sources are recompiled.
///
/// The output of the compile process can be a mix of reused artifacts and freshly compiled
/// `Contract`s
///
/// # Example
///
/// ```no_run
/// use foundry_compilers::Project;
///
/// let project = Project::builder().build().unwrap();
/// let output = project.compile().unwrap();
/// ```
pub fn compile(self) -> Result<ProjectCompileOutput<T>> {
let slash_paths = self.project.slash_paths;
// drive the compiler statemachine to completion
let mut output = self.preprocess()?.compile()?.write_artifacts()?.write_cache()?;
if slash_paths {
// ensures we always use `/` paths
output.slash_paths();
}
Ok(output)
}
/// Does basic preprocessing
/// - sets proper source unit names
/// - check cache
fn preprocess(self) -> Result<PreprocessedState<'a, T>> {
trace!("preprocessing");
let Self { edges, project, mut sources, sparse_output } = self;
// convert paths on windows to ensure consistency with the `CompilerOutput` `solc` emits,
// which is unix style `/`
sources.slash_paths();
let mut cache = ArtifactsCache::new(project, edges)?;
// retain and compile only dirty sources and all their imports
let sources = sources.filtered(&mut cache);
Ok(PreprocessedState { sources, cache, sparse_output })
}
}
/// A series of states that comprise the [`ProjectCompiler::compile()`] state machine
///
/// The main reason is to debug all states individually
#[derive(Debug)]
struct PreprocessedState<'a, T: ArtifactOutput> {
/// Contains all the sources to compile.
sources: FilteredCompilerSources,
/// Cache that holds `CacheEntry` objects if caching is enabled and the project is recompiled
cache: ArtifactsCache<'a, T>,
sparse_output: SparseOutputFilter,
}
impl<'a, T: ArtifactOutput> PreprocessedState<'a, T> {
/// advance to the next state by compiling all sources
fn compile(self) -> Result<CompiledState<'a, T>> {
trace!("compiling");
let PreprocessedState { sources, cache, sparse_output } = self;
let project = cache.project();
let mut output = sources.compile(
&project.solc_config.settings,
&project.paths,
sparse_output,
cache.graph(),
project.build_info,
)?;
// source paths get stripped before handing them over to solc, so solc never uses absolute
// paths, instead `--base-path <root dir>` is set. this way any metadata that's derived from
// data (paths) is relative to the project dir and should be independent of the current OS
// disk. However internally we still want to keep absolute paths, so we join the
// contracts again
output.join_all(cache.project().root());
Ok(CompiledState { output, cache })
}
}
/// Represents the state after `solc` was successfully invoked
#[derive(Debug)]
struct CompiledState<'a, T: ArtifactOutput> {
output: AggregatedCompilerOutput,
cache: ArtifactsCache<'a, T>,
}
impl<'a, T: ArtifactOutput> CompiledState<'a, T> {
/// advance to the next state by handling all artifacts
///
/// Writes all output contracts to disk if enabled in the `Project` and if the build was
/// successful
#[tracing::instrument(skip_all, name = "write-artifacts")]
fn write_artifacts(self) -> Result<ArtifactsState<'a, T>> {
let CompiledState { output, cache } = self;
let project = cache.project();
let ctx = cache.output_ctx();
// write all artifacts via the handler but only if the build succeeded and project wasn't
// configured with `no_artifacts == true`
let compiled_artifacts = if project.no_artifacts {
project.artifacts_handler().output_to_artifacts(
&output.contracts,
&output.sources,
ctx,
&project.paths,
)
} else if output.has_error(&project.ignored_error_codes, &project.compiler_severity_filter)
{
trace!("skip writing cache file due to solc errors: {:?}", output.errors);
project.artifacts_handler().output_to_artifacts(
&output.contracts,
&output.sources,
ctx,
&project.paths,
)
} else {
trace!(
"handling artifact output for {} contracts and {} sources",
output.contracts.len(),
output.sources.len()
);
// this emits the artifacts via the project's artifacts handler
let artifacts = project.artifacts_handler().on_output(
&output.contracts,
&output.sources,
&project.paths,
ctx,
)?;
// emits all the build infos, if they exist
output.write_build_infos(project.build_info_path())?;
artifacts
};
Ok(ArtifactsState { output, cache, compiled_artifacts })
}
}
/// Represents the state after all artifacts were written to disk
#[derive(Debug)]
struct ArtifactsState<'a, T: ArtifactOutput> {
output: AggregatedCompilerOutput,
cache: ArtifactsCache<'a, T>,
compiled_artifacts: Artifacts<T::Artifact>,
}
impl<'a, T: ArtifactOutput> ArtifactsState<'a, T> {
/// Writes the cache file
///
/// this concludes the [`Project::compile()`] statemachine
fn write_cache(self) -> Result<ProjectCompileOutput<T>> {
let ArtifactsState { output, cache, compiled_artifacts } = self;
let project = cache.project();
let ignored_error_codes = project.ignored_error_codes.clone();
let compiler_severity_filter = project.compiler_severity_filter;
let has_error = output.has_error(&ignored_error_codes, &compiler_severity_filter);
let skip_write_to_disk = project.no_artifacts || has_error;
trace!(has_error, project.no_artifacts, skip_write_to_disk, cache_path=?project.cache_path(),"prepare writing cache file");
let cached_artifacts = cache.consume(&compiled_artifacts, !skip_write_to_disk)?;
Ok(ProjectCompileOutput {
compiler_output: output,
compiled_artifacts,
cached_artifacts,
ignored_error_codes,
compiler_severity_filter,
})
}
}
/// Determines how the `solc <-> sources` pairs are executed
#[derive(Debug, Clone)]
#[allow(dead_code)]
enum CompilerSources {
/// Compile all these sequentially
Sequential(VersionedSources),
/// Compile all these in parallel using a certain amount of jobs
Parallel(VersionedSources, usize),
}
impl CompilerSources {
/// Converts all `\\` separators to `/`
///
/// This effectively ensures that `solc` can find imported files like `/src/Cheats.sol` in the
/// VFS (the `CompilerInput` as json) under `src/Cheats.sol`.
fn slash_paths(&mut self) {
#[cfg(windows)]
{
use path_slash::PathBufExt;
fn slash_versioned_sources(v: &mut VersionedSources) {
for (_, (_, sources)) in v {
*sources = std::mem::take(sources)
.into_iter()
.map(|(path, source)| {
(PathBuf::from(path.to_slash_lossy().as_ref()), source)
})
.collect()
}
}
match self {
CompilerSources::Sequential(v) => slash_versioned_sources(v),
CompilerSources::Parallel(v, _) => slash_versioned_sources(v),
};
}
}
/// Filters out all sources that don't need to be compiled, see [`ArtifactsCache::filter`]
fn filtered<T: ArtifactOutput>(self, cache: &mut ArtifactsCache<T>) -> FilteredCompilerSources {
fn filtered_sources<T: ArtifactOutput>(
sources: VersionedSources,
cache: &mut ArtifactsCache<T>,
) -> VersionedFilteredSources {
// fill all content hashes first so they're available for all source sets
sources.iter().for_each(|(_, (_, sources))| {
cache.fill_content_hashes(sources);
});
sources
.into_iter()
.map(|(solc, (version, sources))| {
trace!("Filtering {} sources for {}", sources.len(), version);
let sources = cache.filter(sources, &version);
trace!(
"Detected {} dirty sources {:?}",
sources.dirty().count(),
sources.dirty_files().collect::<Vec<_>>()
);
(solc, (version, sources))
})
.collect()
}
match self {
CompilerSources::Sequential(s) => {
FilteredCompilerSources::Sequential(filtered_sources(s, cache))
}
CompilerSources::Parallel(s, j) => {
FilteredCompilerSources::Parallel(filtered_sources(s, cache), j)
}
}
}
}
/// Determines how the `solc <-> sources` pairs are executed
#[derive(Debug, Clone)]
#[allow(dead_code)]
enum FilteredCompilerSources {
/// Compile all these sequentially
Sequential(VersionedFilteredSources),
/// Compile all these in parallel using a certain amount of jobs
Parallel(VersionedFilteredSources, usize),
}
impl FilteredCompilerSources {
/// Compiles all the files with `Solc`
fn compile(
self,
settings: &Settings,
paths: &ProjectPathsConfig,
sparse_output: SparseOutputFilter,
graph: &GraphEdges,
create_build_info: bool,
) -> Result<AggregatedCompilerOutput> {
match self {
FilteredCompilerSources::Sequential(input) => {
compile_sequential(input, settings, paths, sparse_output, graph, create_build_info)
}
FilteredCompilerSources::Parallel(input, j) => {
compile_parallel(input, j, settings, paths, sparse_output, graph, create_build_info)
}
}
}
#[cfg(test)]
#[allow(unused)]
fn sources(&self) -> &VersionedFilteredSources {
match self {
FilteredCompilerSources::Sequential(v) => v,
FilteredCompilerSources::Parallel(v, _) => v,
}
}
}
/// Compiles the input set sequentially and returns an aggregated set of the solc `CompilerOutput`s
fn compile_sequential(
input: VersionedFilteredSources,
settings: &Settings,
paths: &ProjectPathsConfig,
sparse_output: SparseOutputFilter,
graph: &GraphEdges,
create_build_info: bool,
) -> Result<AggregatedCompilerOutput> {
let mut aggregated = AggregatedCompilerOutput::default();
trace!("compiling {} jobs sequentially", input.len());
for (solc, (version, filtered_sources)) in input {
if filtered_sources.is_empty() {
// nothing to compile
trace!("skip solc {} {} for empty sources set", solc.as_ref().display(), version);
continue
}
trace!(
"compiling {} sources with solc \"{}\" {:?}",
filtered_sources.len(),
solc.as_ref().display(),
solc.args
);
let dirty_files: Vec<PathBuf> = filtered_sources.dirty_files().cloned().collect();
// depending on the composition of the filtered sources, the output selection can be
// optimized
let mut opt_settings = settings.clone();
let sources = sparse_output.sparse_sources(filtered_sources, &mut opt_settings, graph);
for input in CompilerInput::with_sources(sources) {
let actually_dirty = input
.sources
.keys()
.filter(|f| dirty_files.contains(f))
.cloned()
.collect::<Vec<_>>();
if actually_dirty.is_empty() {
// nothing to compile for this particular language, all dirty files are in the other
// language set
trace!(
"skip solc {} {} compilation of {} compiler input due to empty source set",
solc.as_ref().display(),
version,
input.language
);
continue
}
let input = input
.settings(opt_settings.clone())
.normalize_evm_version(&version)
.with_remappings(paths.remappings.clone())
.with_base_path(&paths.root)
.sanitized(&version);
trace!(
"calling solc `{}` with {} sources {:?}",
version,
input.sources.len(),
input.sources.keys()
);
let start = Instant::now();
report::solc_spawn(&solc, &version, &input, &actually_dirty);
let output = solc.compile(&input)?;
report::solc_success(&solc, &version, &output, &start.elapsed());
trace!("compiled input, output has error: {}", output.has_error());
trace!("received compiler output: {:?}", output.contracts.keys());
// if configured also create the build info
if create_build_info {
let build_info = RawBuildInfo::new(&input, &output, &version)?;
aggregated.build_infos.insert(version.clone(), build_info);
}
aggregated.extend(version.clone(), output);
}
}
Ok(aggregated)
}
/// compiles the input set using `num_jobs` threads
fn compile_parallel(
input: VersionedFilteredSources,
num_jobs: usize,
settings: &Settings,
paths: &ProjectPathsConfig,
sparse_output: SparseOutputFilter,
graph: &GraphEdges,
create_build_info: bool,
) -> Result<AggregatedCompilerOutput> {
debug_assert!(num_jobs > 1);
trace!("compile {} sources in parallel using up to {} solc jobs", input.len(), num_jobs);
let mut jobs = Vec::with_capacity(input.len());
for (solc, (version, filtered_sources)) in input {
if filtered_sources.is_empty() {
// nothing to compile
trace!("skip solc {} {} for empty sources set", solc.as_ref().display(), version);
continue
}
let dirty_files: Vec<PathBuf> = filtered_sources.dirty_files().cloned().collect();
// depending on the composition of the filtered sources, the output selection can be
// optimized
let mut opt_settings = settings.clone();
let sources = sparse_output.sparse_sources(filtered_sources, &mut opt_settings, graph);
for input in CompilerInput::with_sources(sources) {
let actually_dirty = input
.sources
.keys()
.filter(|f| dirty_files.contains(f))
.cloned()
.collect::<Vec<_>>();
if actually_dirty.is_empty() {
// nothing to compile for this particular language, all dirty files are in the other
// language set
trace!(
"skip solc {} {} compilation of {} compiler input due to empty source set",
solc.as_ref().display(),
version,
input.language
);
continue
}
let job = input
.settings(settings.clone())
.normalize_evm_version(&version)
.with_remappings(paths.remappings.clone())
.with_base_path(&paths.root)
.sanitized(&version);
jobs.push((solc.clone(), version.clone(), job, actually_dirty))
}
}
// need to get the currently installed reporter before installing the pool, otherwise each new
// thread in the pool will get initialized with the default value of the `thread_local!`'s
// localkey. This way we keep access to the reporter in the rayon pool
let scoped_report = report::get_default(|reporter| reporter.clone());
// start a rayon threadpool that will execute all `Solc::compile()` processes
let pool = rayon::ThreadPoolBuilder::new().num_threads(num_jobs).build().unwrap();
let outputs = pool.install(move || {
jobs.into_par_iter()
.map(move |(solc, version, input, actually_dirty)| {
// set the reporter on this thread
let _guard = report::set_scoped(&scoped_report);
trace!(
"calling solc `{}` {:?} with {} sources: {:?}",
version,
solc.args,
input.sources.len(),
input.sources.keys()
);
let start = Instant::now();
report::solc_spawn(&solc, &version, &input, &actually_dirty);
solc.compile(&input).map(move |output| {
report::solc_success(&solc, &version, &output, &start.elapsed());
(version, input, output)
})
})
.collect::<Result<Vec<_>>>()
})?;
let mut aggregated = AggregatedCompilerOutput::default();
for (version, input, output) in outputs {
// if configured also create the build info
if create_build_info {
let build_info = RawBuildInfo::new(&input, &output, &version)?;
aggregated.build_infos.insert(version.clone(), build_info);
}
aggregated.extend(version, output);
}
Ok(aggregated)
}
#[cfg(test)]
#[cfg(all(feature = "project-util", feature = "svm-solc"))]
mod tests {
use super::*;
use crate::{project_util::TempProject, MinimalCombinedArtifacts};
use std::path::PathBuf;
#[allow(unused)]
fn init_tracing() {
let _ = tracing_subscriber::fmt()
.with_env_filter(tracing_subscriber::EnvFilter::from_default_env())
.try_init()
.ok();
}
#[test]
fn can_preprocess() {
let root = PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("test-data/dapp-sample");
let project =
Project::builder().paths(ProjectPathsConfig::dapptools(root).unwrap()).build().unwrap();
let compiler = ProjectCompiler::new(&project).unwrap();
let prep = compiler.preprocess().unwrap();
let cache = prep.cache.as_cached().unwrap();
// 3 contracts
assert_eq!(cache.dirty_source_files.len(), 3);
assert!(cache.filtered.is_empty());
assert!(cache.cache.is_empty());
let compiled = prep.compile().unwrap();
assert_eq!(compiled.output.contracts.files().count(), 3);
}
#[test]
fn can_detect_cached_files() {
let root = PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("test-data/dapp-sample");
let paths = ProjectPathsConfig::builder().sources(root.join("src")).lib(root.join("lib"));
let project = TempProject::<MinimalCombinedArtifacts>::new(paths).unwrap();
let compiled = project.compile().unwrap();
compiled.assert_success();
let inner = project.project();
let compiler = ProjectCompiler::new(inner).unwrap();
let prep = compiler.preprocess().unwrap();
assert!(prep.cache.as_cached().unwrap().dirty_source_files.is_empty())
}
#[test]
fn can_recompile_with_optimized_output() {
let tmp = TempProject::dapptools().unwrap();
tmp.add_source(
"A",
r#"
pragma solidity ^0.8.10;
import "./B.sol";
contract A {}
"#,
)
.unwrap();
tmp.add_source(
"B",
r#"
pragma solidity ^0.8.10;
contract B {
function hello() public {}
}
import "./C.sol";
"#,
)
.unwrap();
tmp.add_source(
"C",
r"
pragma solidity ^0.8.10;
contract C {
function hello() public {}
}
",
)
.unwrap();
let compiled = tmp.compile().unwrap();
compiled.assert_success();
tmp.artifacts_snapshot().unwrap().assert_artifacts_essentials_present();
// modify A.sol
tmp.add_source(
"A",
r#"
pragma solidity ^0.8.10;
import "./B.sol";
contract A {
function testExample() public {}
}
"#,
)
.unwrap();
let compiler = ProjectCompiler::new(tmp.project()).unwrap();
let state = compiler.preprocess().unwrap();
let sources = state.sources.sources();
// single solc
assert_eq!(sources.len(), 1);
let (_, filtered) = sources.values().next().unwrap();
// 3 contracts total
assert_eq!(filtered.0.len(), 3);
// A is modified
assert_eq!(filtered.dirty().count(), 1);
assert!(filtered.dirty_files().next().unwrap().ends_with("A.sol"));
let state = state.compile().unwrap();
assert_eq!(state.output.sources.len(), 3);
for (f, source) in state.output.sources.sources() {
if f.ends_with("A.sol") {
assert!(source.ast.is_some());
} else {
assert!(source.ast.is_none());
}
}
assert_eq!(state.output.contracts.len(), 1);
let (a, c) = state.output.contracts_iter().next().unwrap();
assert_eq!(a, "A");
assert!(c.abi.is_some() && c.evm.is_some());
let state = state.write_artifacts().unwrap();
assert_eq!(state.compiled_artifacts.as_ref().len(), 1);
let out = state.write_cache().unwrap();
let artifacts: Vec<_> = out.into_artifacts().collect();
assert_eq!(artifacts.len(), 3);
for (_, artifact) in artifacts {
let c = artifact.into_contract_bytecode();
assert!(c.abi.is_some() && c.bytecode.is_some() && c.deployed_bytecode.is_some());
}
tmp.artifacts_snapshot().unwrap().assert_artifacts_essentials_present();
}
#[test]
#[ignore]
fn can_compile_real_project() {
init_tracing();
let paths = ProjectPathsConfig::builder()
.root("../../foundry-integration-tests/testdata/solmate")
.build()
.unwrap();
let project = Project::builder().paths(paths).build().unwrap();
let compiler = ProjectCompiler::new(&project).unwrap();
let _out = compiler.compile().unwrap();
}
}