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Special Mathematical Functions in Fortran

ISO/IEC 1539-4 : 202x

Auxiliary to ISO/IEC 1539 : 2020 “Programming Language Fortran”

NOTE

This paper is intended to suggest some special functions for which standard procedure interfaces
might be specified. Whether it is done as part of Clause 13 of 1539-1, as 1539-4, or as a Technical
Report can be decided later. The exact set of procedures can be decided later. Whether the
procedures are module procedures or intrinsic procedures can be decided later. If they are module
procedures, the module name and whether the module is intrinsic can be decided later.

Subclause 2.4 describes the same procedures as WG14 n1243, plus procedures to compute two
additional functions related to the ones described therein that are better behaved.

Subclause 2.5 proposes additional procedures that are widely used in scientific and engineering
calculations.
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Information technology — Programming languages —1

Fortran —2

Part 4:3

Special Mathematical Functions4

1 Overview5

1.1 Scope6

ISO/IEC 1539 is a multipart International Standard; the parts are published separately. This pub-7

lication, ISO/IEC 1539-4, which is the fourth part, describes the standard intrinsic module ISO For-8

tran Special Functions. The purpose of this part of ISO/IEC 1539 is to promote portability, reliability,9

maintainability, and efficient evaluation of mathematical special functions in Fortran programs, for use10

on a variety of computing systems.11

This part is normative, but optional. A processor need not provide support for this part.12

1.2 Inclusions13

This part of ISO/IEC 1539 specifies14

• the procedures defined by the module ISO Fortran Special Functions,15

• the interface definitions for those procedures, and16

• the mathematical function evaluated by each procedure.17

1.3 Exclusions18

This part of ISO/IEC 1539 does not specify19

• the methods to evaluate the functions, or20

• the accuracy of the results of the procedures.21

1.4 Conformance22

A program conforms to ISO/IEC 1539 if it conforms to ISO/IEC 1539-1 and this part of ISO/IEC 1539.23

A processor conforms to this part of ISO/IEC 1539 if24

• it executes any standard-conforming program in a manner that fulfills the interpretations herein25

and in ISO/IEC 1539-1, subject to any limitations that the processor may impose upon the range26

of the arguments of the procedures, and27

• it contains the capability to detect and report the use within a program of argument values outside28

the ranges specified herein.29
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1.5 Notation used in this part of ISO/IEC 15391

1.5.1 Applicability of requirements2

In this part of ISO/IEC 1539, “shall” is to be interpreted as a requirement; conversely, “shall not” is3

to be interpreted as a prohibition. Except where stated otherwise, such requirements and prohibitions4

apply to programs rather than processors.5

1.5.2 Informative notes6

Informative notes of explanation, rationale, examples, and other material are interspersed with the7

normative body of this part of ISO/IEC 1539. The informative material is nonnormative; it is identified8

by being in shaded, framed boxes that have numbered headings beginning with “NOTE.”9

1.6 Normative references10

The following referenced standards are indispensable for the application of this part of ISO/IEC 1539.11

For dated references, only the edition cited applies. For undated references, the latest edition of the12

referenced standard (including any amendments) applies.13

ISO/IEC 1539-1:2020, Information technology—Programming languages—Fortran—Part 1: Base Lan-14

guage.15

ISO 80000-2:2019, Quantities and units—Part2: Mathematics, Clause 20 Special Functions. Supercedes16

ISO 31-11:1992, Quantities and units—Part 11: Mathematical signs and symbols for use in the physical17

sciences and technology, Clause 14 Special Functions.18

1.7 Nonnormative references19

The following referenced materials are useful but not indispensable for the application of this part of20

ISO/IEC 1539.21

Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark, NIST Handbook of22

Mathematical Functions, National Institute of Standards and Technology and Cambridge University23

Press (2010), ISBN-13 978-0-521-19225-5, ISBN-10 0521192250 (hardback), ISBN-13 978-0-521-14063-824

(paperback). Also NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov.25

Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, U. S. National26

Bureau of Standards (now National Institute of Standards and Technology) Applied Mathematics Series27

#55 (1972) LCCCN 64-60036.28

Jerome Spanier and Keith B. Oldham, An Atlas of Functions, Hemisphere Publishing Corporation,29

New York (1987) ISBN 0-89116-573-8.30
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2 The module ISO Fortran Special Functions1

2.1 General2

The module ISO Fortran Special Functions contains named mathematical constants and the definitions3

of the interfaces of procedures to evaluate special mathematical functions. The procedures are all generic4

procedures. For each generic procedure defined here, the processor shall provide specific procedures for5

all real kinds supported by the processor. It is processor dependent whether the processor provides6

specific procedures for integer kinds other than default integer. The names of the specific procedures7

are private identifiers of ISO Fortran Special Functions. The procedures might be separate module8

procedures (15.6.2.5 in ISO/IEC 1539-1). If so, the submodule identifiers of the submodules in which9

the procedures are defined are processor dependent.10

It is recommended that documentation that accompanies the processor include descriptions of the rela-11

tionship between the ranges of the values of the arguments of the procedures and the accuracy of the12

results.13

2.2 Mathematical constants14

2.2.1 Euler’s constant γ15

Euler’s constant γ (sometimes called the Euler-Mascheroni constant) is defined as16

γ = lim
n→∞

(
n∑
i=1

1

i
− lnn

)

and by other definitions that appear in the references (1.6, 1.7).17

The kind of the named constant EULER_GAMMA shall be the kind supported by the processor that provides18

the most precise representation. The radix of that kind is processor dependent.19

REAL(kind), PARAMETER :: EULER_GAMMA = &20

& 0.5772156649015328606065120900824024310421593359399235988057672348848677_kind21

2.3 Summary of the procedures22

ASSOC LAGUERRE (N, M, X) Associated Laguerre polynomials23

ASSOC LEGENDRE (L, M, X) Associated Legendre Polynomials24

BETA (X, Y) Beta function25

COMP ELLINT 1 (K) Complete elliptic integral of the first kind26

COMP ELLINT 2 (K) Complete elliptic integral of the second kind27

COMP ELLINT 3 (K, NU) Complete elliptic integral of the third kind28

CYL BESSEL I (NU, X) Regular modified cylindrical Bessel function.29

CYL BESSEL J (NU, X) Cylindrical Bessel function.30

CYL BESSEL K (NU, X) Irregular modified cylindrical Bessel function.31

CYL NEUMANN (NU, X) Cylindrical Neumann function.32

ELLINT 1 (K, PHI) Inomplete elliptic integral of the first kind33

7
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ELLINT 2 (K, PHI) Inomplete elliptic integral of the second kind1

ELLINT 3 (K, NU, PHI) Inomplete elliptic integral of the third kind2

EIN (X) Entire exponential integral3

EXPINT (X) Exponential integral4

HERMITE (N, X) Hermite polynomials5

LAGUERRE (N, X) Laguerre polynomials6

LEGENDRE (N, X) Legendre polynomials7

RIEMANN ZETA (X) Riemann zeta function8

SPH BESSEL (N, X) Spherical Bessel function of the first kind9

SPH LEGENDRE (L, M, THETA) Spherical associated Legendre function10

SPH NEUMANN (N, X) Spherical Neumann function11

2.4 Specifications for the procedures12

2.4.1 General13

Detailed specifications of the procedures whose interfaces are defined in the module ISO Fortran Special -14

Functions are provided here in alphabetical order.15

The types and type parameters of the arguments and function results of these procedures are determined16

by these specifications. The “Argument(s)” paragraphs specify requirements on the actual arguments17

of the procedures. The result characteristics are sometimes specified in terms of the characteristics of18

dummy arguments. A program shall not invoke one of these procedures under circumstances where a19

value to be assigned to a subroutine argument or returned as a function result is not representable by20

objects of the specified type and type parameters.21

If an IEEE infinity is assigned or returned, the intrinsic module IEEE ARITHMETIC is accessible, and22

the actual arguments were finite numbers, the flag IEEE OVERFLOW or IEEE DIVIDE BY ZERO23

shall signal. If an IEEE NaN is assigned or returned, the actual arguments were finite numbers, the24

intrinsic module IEEE ARITHMETIC is accessible, and the exception IEEE INVALID is supported, the25

flag IEEE INVALID shall signal. If no IEEE infinity or NaN is assigned or returned, these flags shall26

have the same status as when the intrinsic procedure was invoked.27

2.4.2 ASSOC LAGUERRE (N, M, X)28

Description. Associated Laguerre polynomials.29

Class. Elemental function.30

Arguments.31

N shall be of type integer. The value of N shall not be negative.32

M shall be of type integer with the same kind as M. The value of M shall not be negative.33

X shall be of type real.34

Result Characteristics. The same as X.35

Result Value. The value of the result is a processor-dependent approximation to the associated La-
guerre polynomial Lmn (x) of orders N and M and argument X, defined by

Lmn (x) =
1

n!

n∑
i=0

n!

i!

(
m+ n
n− i

)
(−x)i = (−1)m

dm

dxm
Lm+n(x)

where Lm+n(x) is a Laguerre polynomial (2.4.18)36

8
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Example. ASSOC LAGUERRE ( 1, 1, 1.0 ) has the value 1.0 (approximately).1

2.4.3 ASSOC LEGENDRE (L, M, X)2

Description. Associated Legendre polynomials.3

Class. Elemental function.4

Arguments.5

L shall be of type integer. The value of L shall not be negative.6

M shall be of type integer with the same kind as L. The value of M shall not be negative.7

X shall be of type real. The absolute value of X shall be less than or equal to 1.0.8

Result Characteristics. The same as X.9

Result Value. The value of the result is a processor-dependent approximation to the associated Leg-
endre polynomial Pm` (x) of orders L and M and argument X, defined by

Pm` (x) = (1− x2)m/2
dm

dxm
P`(x), |x| ≤ 1

where P`(x) is a Legendre polynomial (2.4.19).10

Example. ASSOC LEGENDRE ( 1, 1, 1.0 ) has the value 0.0 (approximately).11

2.4.4 BETA (X, Y)12

Description. Beta function.13

Class. Elemental function.14

Arguments.15

X shall be of type real. The value of X shall be greater than 0.0.16

Y shall be of type real with the same kind as X. The value of Y shall be greater than 0.0.17

Result Characteristics. The same as X.18

Result Value. The value of the result is a processor-dependent approximation to the beta function
B(x, y) with arguments X and Y, defined by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

tx−1(1− t)y−1dt, x > 0, y > 0

and several other representations that appear in the references (1.6, 1.7).19

Example. BETA ( 0.5, 0.5 ) has the value 3.141592654 (approximately).20

2.4.5 COMP ELLINT 1 (K)21

Description. Complete elliptic integral of the first kind.22

Class. Elemental function.23

Arguments.24

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.25

Result Characteristics. The same as K.26

9
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Result Value. The value of the result is a processor-dependent approximation to the complete elliptic
integral of the first kind K(k) with argument K, defined by

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
1− t2

√
−1k2t2

, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).1

Example. COMP ELLINT 1 ( 0.0 ) has the value 1.5707963 (approximately).2

2.4.6 COMP ELLINT 2 (K)3

Description. Complete elliptic integral of the second kind.4

Class. Elemental function.5

Arguments.6

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.7

Result Characteristics. The same as K.8

Result Value. The value of the result is a processor-dependent approximation to the complete elliptic
integral of the second kind E(k) with argument K, defined by

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2
1− t2

dt, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).9

Example. COMP ELLINT 2 ( 1.0 ) has the value 1.0 (approximately).10

2.4.7 COMP ELLINT 3 (K, NU)11

Description. Complete elliptic integral of the third kind.12

Class. Elemental function.13

Arguments.14

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.15

NU shall be of type real and the same kind as K.16

Result Characteristics. The same as K.17

Result Value. The value of the result is a processor-dependent approximation to the complete elliptic
integral of the second kind Π(ν; k) with arguments NU and K, defined by

Π(ν; k) =

∫ π/2

0

dθ

(1 + ν sin2 θ)
√

1− k2 sin2 θ
=

∫ 1

0

dt

(1 + νt2)
√

(1− t2)(1− k2t2)
, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).18

Example. COMP ELLINT 3 ( 1.0, 0.0 ) has the value 1.5707963 (approximately).19

2.4.8 CYL BESSEL I (NU, X)20

Description. Regular modified cylindrical Bessel function.21

10
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Class. Elemental function.1

Arguments.2

NU shall be of type real.3

X shall be of type real and the same kind as NU. The value of X shall not be negative.4

Result Characteristics. The same as X.5

Result Value. The value of the result is a processor-dependent approximation to the regular modified
cylindrical Bessel function Iν(x) of order NU with argument X, defined by

Iν(x) = i−νJν(ix) =
(x

2

)ν ∞∑
k=0

(x/2)2k

k!Γ(ν + k + 1)
, x ≥ 0,

and several other representations that appear in the references (1.6, 1.7).6

Example. CYL BESSEL I ( 0.0, 0.0 ) has the value 1.0 (approximately).7

2.4.9 CYL BESSEL J (NU, X)8

Description. Cylindrical Bessel function.9

Class. Elemental function.10

Arguments.11

NU shall be of type real.12

X shall be of type real and the same kind as NU. The value of X shall not be negative.13

Result Characteristics. The same as X.14

Result Value. The value of the result is a processor-dependent approximation to the cylindrical Bessel
function Jν(x) of order NU with argument X, defined by

Jν(x) =
(x

2

)ν ∞∑
k=0

(−1)k(x/2)2k

k!Γ(ν + k + 1)
, x ≥ 0,

and several other representations that appear in the references (1.6, 1.7).15

NOTE 2.1

This is a generalization of the standard intrinsic function BESSEL JN to noninteger order.

Example. CYL BESSEL I ( 0.0, 0.0 ) has the value 0.0 (approximately).16

2.4.10 CYL BESSEL K (NU, X)17

Description. Irregular modified cylindrical Bessel function.18

Class. Elemental function.19

Arguments.20

NU shall be of type real.21

X shall be of type real and the same kind as NU. The value of X shall not be negative.22

Result Characteristics. The same as X.23

11
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Result Value. The value of the result is a processor-dependent approximation to the irregular modified
cylindrical Bessel function Kν(x) of order NU with argument X, defined by

Kν(x) =
π

2
iν+1(Jν(ix) + iNν(ix)) =

π

2
lim
µ→ν

I−µ(x)− Iµ(x)

sinµx
, x ≥ 0

and several other representations that appear in the references (1.6, 1.7).1

NOTE 2.2

The irregular modified cylindrical Bessel function is also known as the Bassett function.

Example. CYL BESSEL K ( 0.0, HUGE(0.0) ) has the value 0.0 (approximately).2

2.4.11 CYL NEUMANN (NU, X)3

Description. Cylindrical Neumann function.4

Class. Elemental function.5

Arguments.6

NU shall be of type real.7

X shall be of type real and the same kind as NU. The value of X shall not be negative.8

Result Characteristics. The same as X.9

Result Value. The value of the result is a processor-dependent approximation to the cylindrical
Neumann function Nν(x) of order NU with argument X, defined by

Nν(x) = lim
µ→ν

Jµ(x) cosµx− J−µ(x)

sinµx
, x ≥ 0

and several other representations that appear in the references (1.6, 1.7).10

NOTE 2.3

The Neumann function is also known as the cylindrical Bessel function of the second kind, Yν(x).

NOTE 2.4

This is a generalization of the standard intrinsic function BESSEL YN to noninteger order.

Example. CYL NEUMANN ( -0.5, 0.0 ) has the value 0.0 (approximately).11

2.4.12 ELLINT 1 (K, PHI)12

Description. Incomplete elliptic integral of the first kind.13

Class. Elemental function.14

Arguments.15

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.16

PHI shall be of type real and the same kind as K.17

Result Characteristics. The same as K.18

12
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Result Value. The value of the result is a processor-dependent approximation to the incomplete elliptic
integral of the first kind F (k, φ) with arguments K and PHI, defined by

E(k, φ) =

∫ φ

0

dθ√
1− k2 sin2 θ

, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).1

Example. ELLINT 1 ( 0.0, 1.5707963 ) has the value 1.5707963 (approximately).2

2.4.13 ELLINT 2 (K, PHI)3

Description. Incomplete elliptic integral of the second kind.4

Class. Elemental function.5

Arguments.6

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.7

PHI shall be of type real and the same kind as K.8

Result Characteristics. The same as K.9

Result Value. The value of the result is a processor-dependent approximation to the incomplete elliptic
integral of the second kind E(k, φ) with arguments K and PHI, defined by

E(k, φ) =

∫ φ

0

√
1− k2 sin2 θ dθ, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).10

Example. ELLINT 2 ( 1.0, 1.5707963 ) has the value 1.0 (approximately).11

2.4.14 ELLINT 3 (K, NU, PHI)12

Description. Incomplete elliptic integral of the third kind.13

Class. Elemental function.14

Arguments.15

K shall be of type real. The absolute value of K shall be less than or equal to 1.0.16

NU shall be of type real and the same kind as K.17

PHI shall be of type real and the same kind as K.18

Result Characteristics. The same as K.19

Result Value. The value of the result is a processor-dependent approximation to the complete elliptic
integral of the second kind Π(ν; k, φ) with arguments NU, K, and PHI, defined by

Π(ν; k, φ) =

∫ φ

0

dθ

(1 + ν sin2 θ)
√

1− k2 sin2 θ
, |k| ≤ 1

and several other representations that appear in the references (1.6, 1.7).20

Example. ELLINT 3 ( 1.0, 0.0, 1.5707963 ) has the value 1.5707963 (approximately).21

2.4.15 EIN (X)22

13
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Description. Entire exponential integral.1

Class. Elemental function.2

Arguments.3

X shall be of type real.4

Result Value. The value of the result is a processor-dependent approximation to the entire exponential
integral Ein(x) with argument X, defined by

Ein(x) =

∫ x

0

1− exp(−t)
t

dt = γ + ln |x| − Ei(−x),

where γ ≈ 0.57721 56649 is Euler’s constant, and several other representations that appear in the5

references (1.6, 1.7).6

Example. EIN ( 1.0 ) has the value 0.7965995993 (approximately).7

2.4.16 EXPINT (X)8

Description. Exponential integral.9

Class. Elemental function.10

Arguments.11

X shall be of type real.12

Result Value. The value of the result is a processor-dependent approximation to the exponential
integral Ei(x) with argument X, defined by

Ei(x) =

∫ x

−∞

exp(t)

t
dt =

∫ ∞
−x

exp(−t)
t

dt.

The integrand is singular at x = 0, so for x > 0 the integral is interpeted as the Cauchy limit

Ei(x) = lim
ε→0+

(
Ei(−ε) +

∫ x

ε

exp(t)

t
dt

)
, x > 0.

Several other representations appear in the references (1.6, 1.7).13

Example. EXPINT ( 1.0 ) has the value 1.895117816 (approximately).14

2.4.17 HERMITE (N, X)15

Description. Hermite polynomial.16

Class. Elemental function.17

Arguments.18

N shall be of type integer.19

X shall be of type real.20

Result Value. The value of the result is a processor-dependent approximation to the Hermite polyno-
mial Hn(x) of order N with argument X, defined by the Rodrigues formula

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2),

14
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and several other representations that appear in the references (1.6, 1.7).1

Example. HERMITE ( 1, 1.0 ) has the value 2.0 (approximately).2

2.4.18 LAGUERRE (N, X)3

Description. Laguerre polynomial.4

Class. Elemental function.5

Arguments.6

N shall be of type integer.7

X shall be of type real. The value of X shall not be negative.8

Result Value. The value of the result a processor-dependent approximation to the Laguerre polynomial
Ln(x) of order N with argument X, defined by the Rodrigues formula

Ln(x) =
exp(x)

n!

dn

dxn
(xn exp(−x)) , x ≥ 0,

and several other representations that appear in the references (1.6, 1.7).9

Example. LAGUERRE ( 1, 1.0 ) has the value 0.0 (approximately).10

2.4.19 LEGENDRE (N, X)11

Description. Legendre polynomial.12

Class. Elemental function.13

Arguments.14

N shall be of type integer.15

X shall be of type real.16

Result Value. The value of the result is a processor-dependent approximation to the Legendre poly-
nomial Pn(x) of order N with argument X, defined by the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
,

and several other representations that appear in the references (1.6, 1.7).17

Example. LEGENDRE ( 1, 1.0 ) has the value 1.0 (approximately).18

2.4.20 RIEMANN ZETA (X)19

Description. Riemann zeta function.20

Class. Elemental function.21

Arguments.22

X shall be of type real.23

Result Value. The value of the result is a processor-dependent approximation to the Riemann zeta

15
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function ζ(x) with argument X, defined by

ζ(x) =



∑∞
k=1 k

−x x > 1

1
1−21−x

∑∞
k=1(−1)k−1k−x 0 ≤ x ≤ 1

2xπx−1 sin
(
πx
2

)
Γ(1− x)ζ(1− x) x < 0

,

and several other representations that appear in the references (1.6, 1.7).1

Example. RIEMANN ZETA ( 0.5 ) has the value −1.460354509 (approximately).2

2.4.21 SPH BESSEL (N, X)3

Description. Spherical Bessel function of the first kind.4

Class. Elemental function.5

Arguments.6

N shall be of type integer. The value of N shall not be negative.7

X shall be of type real. The value of X shall not be negative.8

Result Value. The value of the result is a processor-dependent approximation to the Spherical Bessel
function of the first kind jn(x) of order N with argument X, defined by

jn(x) =

√
π

2x
Jn+1/2(x), x ≥ 0,

where Jn+1/2 is the cylindrical Bessel function. Several other representations appear in the references9

(1.6, 1.7).10

Example. SPH BESSEL ( 0, 1.0 ) has the value 0.8414709848 (approximately).11

2.4.22 SPH LEGENDRE (L, M, THETA)12

Description. Spherical associated Legendre function.13

Class. Elemental function.14

Arguments.15

L shall be of type integer.16

M shall be of type integer. The absolute value of M shall be less than or equal to the value17

of L.18

THETA shall be of type real.19

Result Value. The value of the result is a processor-dependent approximation to the Spherical associ-
ated Legendre function Y m` (θ, 0) of order M and L with argument THETA, where Y m` (θ, φ) is defined
by

Y m` (θ, φ) = (−1)m
[

(2`+ 1)

4π

(`−m)!

(`+m)!

]1/2
Pm` (cos θ) exp(imφ), |m| ≤ `,

and several other representations that appear in the references (1.6, 1.7).20

Example. SPH LEGENDRE ( 0, 0, 0.0 ) has the value 0.0 (approximately).21

2.4.23 SPH NEUMANN (N, X)22

16
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Description. Spherical Neumann function.1

Class. Elemental function.2

Arguments.3

N shall be of type integer. The value of N shall not be negative.4

X shall be of type real. The value of X shall not be negative.5

Result Value. The value of the result is a processor-dependent approximation to the Spherical Neu-
mann function nn(x) of order N with argument X, defined by

nn(x) =

√
π

2x
Nn+1/2(x), x ≥ 0,

where Nn+1/2 is the Neumann function. Several other representations appear in the references (1.6, 1.7).6

Example. SPH NEUMANN ( 1, 1.0 ) has the value −1.381773291 (approximately).7

2.5 Proposed additional procedures8

2.5.1 CI (X)9

Description. Cosine integral.10

Class. Elemental function.11

Arguments.12

X shall be of type real. The value of X shall not be zero.13

Result Value. The value of the result is a processor-dependent approximation to the cosine integral
Ci(x) with argument X, defined by

Ci(x) = −
∫ ∞
x

cos t

t
dt,

and other representations that appear in the references (1.6, 1.7).14

Example. CI ( 1.0 ) has the value −0.3374039229 (approximately).15

2.5.2 CHEBYSHEV (N, X)16

Description. Chebyshev polynomial.17

Class. Elemental function.18

Arguments.19

N shall be of type integer. The value of N shall not be negative.20

X shall be of type real.21

Result Value. The value of the result is a processor-dependent approximation to the Chebyshev
polynomial Tn(x) of order N with argument X, defined by

Tn(x) = cos(n cos−1 x)

and other representations that appear in the references (1.6, 1.7).22

17
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Example. CHEBYSEV ( 1, 1.0 ) has the value 1.0 (approximately).1

2.5.3 CIN (X)2

Description. Entire cosine integral.3

Class. Elemental function.4

Arguments.5

X shall be of type real.6

Result Value. The value of the result is a processor-dependent approximation to the entire cosine
integral Cin(x) with argument X, defined by

Cin(x) =

∫ x

0

1− cos t

t
dt = γ + ln |x| − Ci(x),

and other representations that appear in the references (1.6, 1.7).7

Example. CIN ( 1.0 ) has the value 0.2398117420 (approximately).8

2.5.4 DAW (X)9

Description. Dawson function.10

Class. Elemental function.11

Arguments.12

X shall be of type real.13

Result Value. The value of the result is a processor-dependent approximation to the Dawson function
daw(x) with argument X, defined by

daw(x) =

∫ x

0

exp(t2 − x2) dt

and other representations that appear in the references (1.6, 1.7).14

Example. DAW ( 1.0 ) has the value 0.5380795069 (approximately).15

2.5.5 ERFCI (X)16

Description. Inverse co-error function.17

Class. Elemental function.18

Arguments.19

X shall be of type real.20

Result Value. The value of the result is a processor-dependent approximation to the value y such that
x = erfc(y), that is

x = erfc(y) =
2√
π

∫ ∞
y

exp(−t2) dt,

and other representations that appear in the references (1.6, 1.7).21

18
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Example. ERFCI ( 0.5 ) has the value 0.5230637238 (approximately).1

2.5.6 ERFI (X)2

Description. Inverse error function.3

Class. Elemental function.4

Arguments.5

X shall be of type real.6

Result Value. The value of the result is a processor-dependent approximation to the value y such that
x = erf(y), that is

x = erf(y) =
2√
π

∫ y

0

exp(−t2) dt,

and other representations that appear in the references (1.6, 1.7).7

Example. ERFI ( 0.5 ) has the value 0.4769362762 (approximately).8

2.5.7 FRESNEL C (X)9

Description. Fresnel cosine integral.10

Class. Elemental function.11

Arguments.12

X shall be of type real.13

Result Value. The value of the result is a processor-dependent approximation to the Fresnel cosine
integral C(x) with argument X, defined by

C(x) =

∫ x

0

cos
(π

2
t2
)

dt,

and other representations that appear in the references (1.6, 1.7).14

Example. FRESNEL C ( 1.0 ) has the value 0.7798934004 (approximately).15

2.5.8 FRESNEL S (X)16

Description. Fresnel sine integral.17

Class. Elemental function.18

Arguments.19

X shall be of type real.20

Result Value. The value of the result is a processor-dependent approximation to the Fresnel sine
integral S(x) with argument X, defined by

S(x) =

∫ x

0

sin
(π

2
t2
)

dt,

and other representations that appear in the references (1.6, 1.7).21

19
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Example. FRESNEL S ( 1.0 ) has the value 0.4382591474 (approximately).1

2.5.9 INCOMPLETE GAMMA RATIOS (NU, X, P, Q)2

Description. Incomplete gamma function ratios.3

Class. Elemental subroutine.4

Arguments.5

NU shall be of type real. The value of NU shall be greater than zero. NU is an INTENT(IN)6

argument.7

X shall be of type real and the same kind as NU. The value of X shall be greater than zero.8

X is an INTENT(IN) argument.9

P shall be of type real and the same kind as NU. P is an INTENT(OUT) argument.10

Q shall be of type real and the same kind as NU. Q is an INTENT(OUT) argument.11

Result Value. The values of the P and Q arguments are processor-dependent approximations to the
incomplete gamma ratios P (ν;x) and Q(ν;x) with arguments NU and X, defined by

P (ν;x) =
γ(ν;x)

Γ(ν)
and Q(ν;x) =

Γ(ν;x)

Γ(ν)
, where

γ(ν;x) =

∫ x

0

tν−1 exp(−t) dt and Γ(ν;x) =

∫ ∞
x

tν−1 exp(−t) dt, x > 0, ν > 0,

and other representations that appear in the references (1.6, 1.7).12

Example. After executing CALL INCOMPLETE GAMMA RATIO ( 1.0, 1.0, P, Q ), the variables P13

and Q have the approximate values 0.6321205588 and 0.3678794412, respectively.14

NOTE 2.5

P (ν;x)+Q(ν;x) = 1, but they are not equally well conditioned computationally. In general, when
one is small, it should not be computed by subtracting the other from 1.0. When ν ≈ x, ν >> 0,
and x >> 0, they are both very poorly conditioned.

2.5.10 SI (X)15

Description. Sine integral.16

Class. Elemental function.17

Arguments.18

X shall be of type real.19

Result Value. The value of the result is a processor-dependent approximation to the sine integral
Si(x), defined by

Si(x) =

∫ x

0

sin t

t
dt,

and other representations that appear in the references (1.6, 1.7).20

Example. SI ( 1.0 ) has the value 0.9460830704 (approximately).21

20
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Annex A1

(Informative)2

Processor dependencies3

According to this part of ISO/IEC 1539, the following are processor dependent:4

• The kind and radix of the named constant EULER_GAMMA (2.2.1).5

• Whether procedures are provided with integer arguments of other than default integer kind. .6

21


