-
Notifications
You must be signed in to change notification settings - Fork 1
/
achobot.py
198 lines (172 loc) · 7.17 KB
/
achobot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# USAGE
# python achobot.py
# import the necessary packages
import win32api
import keyboard as keyboard
import pygame as pygame
import pythoncom
import win32con
from PIL import ImageGrab
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import pyautogui
# construct the argument parse and parse the arguments
from keyboard._mouse_event import RIGHT
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=False,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=False,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.6,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
prott1 = 'MobileNetSSD_deploy.prototxt.txt'
prott2 = 'MobileNetSSD_deploy.caffemodel'
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(prott1, prott2)
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
# vs = VideoStream(src=0).start()
# time.sleep(2.0)
# fps = FPS().start()
# loop over the frames from the video stream
HSX = 100;
LSX = 1000;
HSY = 100;
LSY = 1000;
HEX = 100;
LEX = 1000;
HEY = 100;
LEY = 1000;
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = np.array(ImageGrab.grab(bbox=(0, 40, 1820, 1240)))
# frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
if 'person' in label:
pygame.init()
pygame.event.get()
if pygame.mouse.get_pressed():
print
'pressing'
# tried to detect my character's offset and add the best way to exclude it, failed most tests.
if startX > 369 & startX < 1402 & startY > -1 & startY < 725 & endX > 339 & endX < 1805 & endY > 806 & endY < 1017:
print
'found myself'
else:
# print 'found somebody else'
nosum = int(round(startX * 1)) + int(round(startX * 0.06))
nosum2 = int(round(y * 1)) + int(round(y * 0.7))
halfX = (endX - startX) / 2
halfY = (endY - startY) / 2
finalX = startX + halfX
finalY = startY + halfY
#pyautogui.moveTo(finalX, finalY)
# win32api.SetCursorPos((finalX, finalY))
#win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, int(finalX), int(finalY), 0, 0)
#win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, int(finalX), int(finalY), 0, 0)
# print 'Pressed L'
if 'HSX' not in locals():
HSX = startX
if 'LSX' not in locals():
LSX = startX
if 'HSY' not in locals():
HSY = startY
if 'LSY' not in locals():
LSY = startY
if 'HEX' not in locals():
HEX = endX
if 'LEX' not in locals():
LEX = endX
if 'HEY' not in locals():
HEY = endY
if 'LEY' not in locals():
LEY = endY
if startX > HSX:
HSX = startX
if startX < LSX:
LSX = startX
if startY > HSY:
HSY = startY
if startY < LSY:
LSY = startY
if endX > HEX:
HEX = endX
if endX < LEX:
LEX = endX
if endY > HEY:
HEY = endY
if endY < LEY:
LEY = endY
print
'HStartX: ' + str(HSX)
print
'LStartX: ' + str(LSX)
print
'HStartY: ' + str(HSY)
print
'LStartY: ' + str(LSY)
print
'HendX: ' + str(HEX)
print
'LendX: ' + str(LEX)
print
'HendY: ' + str(HEY)
print
'LendY: ' + str(LEY)
# print args["confidence"]
# click(10,10)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
# stop the timer and display FPS information
# do a bit of cleanup
cv2.destroyAllWindows()