-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathmemory_pool.cpp
126 lines (108 loc) · 4.03 KB
/
memory_pool.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
// Copyright (C) 2015-2023 Jonathan Müller and foonathan/memory contributors
// SPDX-License-Identifier: Zlib
#include "memory_pool.hpp"
#include <algorithm>
#include <doctest/doctest.h>
#include <random>
#include <vector>
#include "allocator_storage.hpp"
#include "test_allocator.hpp"
using namespace foonathan::memory;
// don't test actual node allocationg, but the connection between arena and the implementation
// so only test for memory_pool<node_pool>
TEST_CASE("memory_pool")
{
using pool_type = memory_pool<node_pool, allocator_reference<test_allocator>>;
test_allocator alloc;
{
pool_type pool(4, pool_type::min_block_size(4, 25), alloc);
REQUIRE(pool.node_size() >= 4u);
REQUIRE(pool.capacity_left() >= 25 * 4u);
REQUIRE(pool.next_capacity() >= 25 * 4u);
REQUIRE(alloc.no_allocated() == 1u);
SUBCASE("normal alloc/dealloc")
{
std::vector<void*> ptrs;
auto capacity = pool.capacity_left();
REQUIRE(capacity / 4 >= 25);
for (std::size_t i = 0u; i != 25; ++i)
ptrs.push_back(pool.allocate_node());
REQUIRE(pool.capacity_left() >= 0u);
REQUIRE(alloc.no_allocated() == 1u);
std::shuffle(ptrs.begin(), ptrs.end(), std::mt19937{});
for (auto ptr : ptrs)
pool.deallocate_node(ptr);
REQUIRE(pool.capacity_left() == capacity);
}
SUBCASE("multiple block alloc/dealloc")
{
std::vector<void*> ptrs;
auto capacity = pool.capacity_left();
for (std::size_t i = 0u; i != capacity / pool.node_size(); ++i)
ptrs.push_back(pool.allocate_node());
REQUIRE(pool.capacity_left() >= 0u);
ptrs.push_back(pool.allocate_node());
REQUIRE(pool.capacity_left() >= capacity - pool.node_size());
REQUIRE(alloc.no_allocated() == 2u);
std::shuffle(ptrs.begin(), ptrs.end(), std::mt19937{});
for (auto ptr : ptrs)
pool.deallocate_node(ptr);
REQUIRE(pool.capacity_left() >= capacity);
REQUIRE(alloc.no_allocated() == 2u);
}
}
{
pool_type pool(16, pool_type::min_block_size(16, 1), alloc);
REQUIRE(pool.node_size() == 16u);
REQUIRE(pool.capacity_left() == 16u);
REQUIRE(pool.next_capacity() >= 16u);
REQUIRE(alloc.no_allocated() == 1u);
auto ptr = pool.allocate_node();
REQUIRE(ptr);
pool.deallocate_node(ptr);
}
REQUIRE(alloc.no_allocated() == 0u);
}
namespace
{
template <typename PoolType>
void use_min_block_size(std::size_t node_size, std::size_t number_of_nodes)
{
auto min_size = memory_pool<PoolType>::min_block_size(node_size, number_of_nodes);
memory_pool<PoolType> pool(node_size, min_size);
CHECK(pool.capacity_left() >= node_size * number_of_nodes);
// First allocations should not require realloc.
for (auto i = 0u; i != number_of_nodes; ++i)
{
auto ptr = pool.try_allocate_node();
CHECK(ptr);
}
// Further allocation might require it, but should still succeed then.
auto ptr = pool.allocate_node();
CHECK(ptr);
}
} // namespace
TEST_CASE("memory_pool::min_block_size()")
{
SUBCASE("node_pool")
{
use_min_block_size<node_pool>(1, 1);
use_min_block_size<node_pool>(16, 1);
use_min_block_size<node_pool>(1, 1000);
use_min_block_size<node_pool>(16, 1000);
}
SUBCASE("array_pool")
{
use_min_block_size<array_pool>(1, 1);
use_min_block_size<array_pool>(16, 1);
use_min_block_size<array_pool>(1, 1000);
use_min_block_size<array_pool>(16, 1000);
}
SUBCASE("small_node_pool")
{
use_min_block_size<small_node_pool>(1, 1);
use_min_block_size<small_node_pool>(16, 1);
use_min_block_size<small_node_pool>(1, 1000);
use_min_block_size<small_node_pool>(16, 1000);
}
}