-
Notifications
You must be signed in to change notification settings - Fork 1
/
__init__.py
379 lines (307 loc) · 14.8 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# CogVideoX
# Created by AI Wiz Art (Stefano Flore)
# Version: 1.4
# https://stefanoflore.it
# https://ai-wiz.art
import os
import torch
import numpy as np
import cv2
from datetime import datetime
from diffusers import (
CogVideoXPipeline,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXVideoToVideoPipeline,
)
from huggingface_hub import snapshot_download
from PIL import Image
from tqdm import tqdm
from scipy.ndimage import gaussian_filter
COMFYUI_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def download_model_if_needed(model_name):
local_dir = os.path.join(COMFYUI_ROOT, "models", "CogVideoX")
model_dir = os.path.join(local_dir, model_name.split("/")[-1])
if not os.path.exists(model_dir):
print(f"Model {model_name} not found locally. Downloading...")
os.makedirs(local_dir, exist_ok=True)
snapshot_download(
repo_id=model_name,
local_dir=model_dir,
local_dir_use_symlinks=False,
)
print(f"Model {model_name} downloaded successfully to {model_dir}")
return model_dir
def resize_and_crop(image, target_size):
width, height = image.size
target_width, target_height = target_size
aspect_ratio = width / height
target_aspect_ratio = target_width / target_height
if aspect_ratio > target_aspect_ratio:
new_height = target_height
new_width = int(new_height * aspect_ratio)
else:
new_width = target_width
new_height = int(new_width / aspect_ratio)
image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - target_width) // 2
top = (new_height - target_height) // 2
right = left + target_width
bottom = top + target_height
return image.crop((left, top, right, bottom))
class CogVideoXImageToVideoNodeExtended:
pipe = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": ("STRING", {"multiline": True}),
"image": ("IMAGE",),
"num_frames": ("INT", {"default": 49, "min": 49, "max": 2**31-1, "step": 49}),
"num_inference_steps": ("INT", {"default": 10, "min": 1, "max": 1000}),
"guidance_scale": ("FLOAT", {"default": 6.0, "min": 0.1, "max": 30.0}),
"use_dynamic_cfg": ("BOOLEAN", {"default": True}),
"seed": ("INT", {"default": 0, "min": 0, "max": 99999999999999}),
"interpolation_factor": ("INT", {"default": 3, "min": 1, "max": 7, "step": 2}),
"flow_precision": ("FLOAT", {"default": 0.5, "min": 0.1, "max": 1.0, "step": 0.1}),
"motion_threshold": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05}),
"smoothness": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
"flow_method": (["DIS", "Farneback", "TV-L1"],),
"edge_mode": (["Replicate", "Reflect", "Wrap", "Constant"],),
"interpolation_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1}),
"upscale_factor": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 2.0, "step": 0.05}),
}
}
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video_out",)
FUNCTION = "generate_extended_video"
CATEGORY = "AI WizArt/CogVideoX"
@classmethod
def load_model(cls):
if cls.pipe is None:
model = "THUDM/CogVideoX-5b-I2V"
model_dir = cls.download_model_if_needed(model)
cls.pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_dir, torch_dtype=torch.bfloat16)
cls.pipe.scheduler = CogVideoXDPMScheduler.from_config(cls.pipe.scheduler.config, timestep_spacing="trailing")
cls.pipe.enable_sequential_cpu_offload()
cls.pipe.vae.enable_slicing()
cls.pipe.vae.enable_tiling()
return cls.pipe
@staticmethod
def download_model_if_needed(model_name):
return download_model_if_needed(model_name)
def generate_extended_video(self, prompt, image, num_frames, num_inference_steps, guidance_scale, use_dynamic_cfg, seed,
interpolation_factor, flow_precision, motion_threshold, smoothness, flow_method, edge_mode,
interpolation_strength, upscale_factor):
num_frames = max(49, (num_frames // 49) * 49)
try:
pipe = self.load_model()
generator = torch.Generator().manual_seed(seed)
pil_image = self.preprocess_image(image)
print(f"Preprocessed image size: {pil_image.size}")
all_frames = []
segment_size = 49
last_frame = pil_image
with tqdm(total=num_frames, desc="Generating extended video") as progress_bar:
while len(all_frames) < num_frames:
frames_to_generate = min(segment_size, num_frames - len(all_frames))
context_images = [last_frame]
print(f"Generating segment. Last frame size: {last_frame.size}")
output = pipe(
prompt=prompt,
image=context_images,
num_inference_steps=num_inference_steps,
num_frames=frames_to_generate,
use_dynamic_cfg=use_dynamic_cfg,
guidance_scale=guidance_scale,
generator=generator,
width=720,
height=480,
)
new_frames = self.process_output_frames(output.frames)
print(f"Generated {len(new_frames)} new frames")
if new_frames:
all_frames.extend(new_frames)
last_frame = Image.fromarray(new_frames[-1])
else:
print("Warning: No new frames generated in this iteration")
progress_bar.update(len(new_frames))
all_frames = all_frames[:num_frames]
print(f"Final video length before interpolation: {len(all_frames)} frames")
interpolated_frames = self.apply_optical_flow_interpolation(all_frames, interpolation_factor, flow_precision,
motion_threshold, smoothness, flow_method, edge_mode,
interpolation_strength)
print(f"Final video length after interpolation: {len(interpolated_frames)} frames")
print(f"Final video length after interpolation: {len(interpolated_frames)} frames")
if upscale_factor > 1.0:
print(f"Upscaling frames by factor {upscale_factor}")
upscaled_frames = []
with tqdm(total=len(interpolated_frames), desc="Upscaling frames") as pbar:
for frame in interpolated_frames:
h, w = frame.shape[:2]
new_h = int(h * upscale_factor)
new_w = int(w * upscale_factor)
upscaled = cv2.resize(frame, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
upscaled_frames.append(upscaled)
pbar.update(1)
return (upscaled_frames,)
return (interpolated_frames,)
except Exception as e:
print(f"Error during extended video generation: {str(e)}")
raise
def apply_optical_flow_interpolation(self, frames, factor, precision, threshold, smoothness, method, edge_mode, strength):
interpolated = []
flow_params = {
'pyr_scale': 0.5,
'levels': 3,
'winsize': 15,
'iterations': 3,
'poly_n': 5,
'poly_sigma': 1.2,
'flags': 0
}
with tqdm(total=len(frames) - 1, desc="Applying optical flow interpolation") as pbar:
for i in range(len(frames) - 1):
frame1 = frames[i]
frame2 = frames[i + 1]
gray1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
if method == "Farneback":
flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, **flow_params)
elif method == "TV-L1":
try:
optical_flow = cv2.optflow.DualTVL1OpticalFlow_create()
except AttributeError:
try:
optical_flow = cv2.createOptFlow_DualTVL1()
except AttributeError:
print("TV-L1 optical flow not available. Using Farneback method instead.")
flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, **flow_params)
else:
flow = optical_flow.calc(gray1, gray2, None)
else:
flow = optical_flow.calc(gray1, gray2, None)
elif method == "DIS":
try:
flow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_MEDIUM).calc(gray1, gray2, None)
except AttributeError:
print("DIS optical flow not available. Using Farneback method instead.")
flow = cv2.calcOpticalFlowFarneback(gray1, gray2, None, **flow_params)
flow = self.apply_smoothness(flow, smoothness)
flow_magnitude = np.sqrt(flow[..., 0]**2 + flow[..., 1]**2)
flow[flow_magnitude < threshold] = 0
interpolated.append(frame1)
for j in range(1, factor + 1):
t = j / (factor + 1)
warped = self.warp_flow(frame1, flow * t * strength, edge_mode)
blended = cv2.addWeighted(frame1, 1 - t, warped, t, 0)
interpolated.append(blended)
pbar.update(1)
interpolated.append(frames[-1])
return interpolated
def apply_smoothness(self, flow, smoothness):
if smoothness > 0:
sigma = smoothness * 5
flow[:,:,0] = gaussian_filter(flow[:,:,0], sigma=sigma)
flow[:,:,1] = gaussian_filter(flow[:,:,1], sigma=sigma)
return flow
def warp_flow(self, img, flow, edge_mode):
h, w = flow.shape[:2]
flow = -flow
flow[:,:,0] += np.arange(w)
flow[:,:,1] += np.arange(h)[:,np.newaxis]
if edge_mode == "Replicate":
border_mode = cv2.BORDER_REPLICATE
elif edge_mode == "Reflect":
border_mode = cv2.BORDER_REFLECT
elif edge_mode == "Wrap":
border_mode = cv2.BORDER_WRAP
elif edge_mode == "Constant":
border_mode = cv2.BORDER_CONSTANT
else:
border_mode = cv2.BORDER_REPLICATE
return cv2.remap(img, flow, None, cv2.INTER_LINEAR, borderMode=border_mode)
def process_output_frames(self, frames):
processed_frames = []
for frame in frames:
if isinstance(frame, list):
for subframe in frame:
if isinstance(subframe, np.ndarray):
processed_frames.append(subframe)
elif isinstance(subframe, Image.Image):
processed_frames.append(np.array(subframe))
else:
print(f"Unexpected subframe type: {type(subframe)}")
elif isinstance(frame, np.ndarray):
processed_frames.append(frame)
elif isinstance(frame, Image.Image):
processed_frames.append(np.array(frame))
else:
print(f"Unexpected frame type: {type(frame)}")
return processed_frames
def preprocess_image(self, image):
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if image.ndim == 4 and image.shape[0] == 1:
image = image[0]
if image.ndim == 3:
if image.shape[0] == 3:
image = np.transpose(image, (1, 2, 0))
elif image.shape[2] != 3:
raise ValueError(f"The image must have 3 color channels, found: {image.shape[2]}")
if image.dtype != np.uint8:
image = (image * 255).astype(np.uint8)
pil_image = Image.fromarray(image)
target_size = (720, 480)
return resize_and_crop(pil_image, target_size)
class SaveVideoNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video": ("VIDEO",),
"filename_prefix": ("STRING", {"default": "cogvideox"}),
"fps": ("INT", {"default": 30, "min": 1, "max": 60}),
}
}
RETURN_TYPES = ()
FUNCTION = "save_video"
OUTPUT_NODE = True
CATEGORY = "AI WizArt/CogVideoX"
def save_video(self, video, filename_prefix, fps):
output_dir = os.path.join(COMFYUI_ROOT, "output")
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{filename_prefix}_{timestamp}.mp4"
output_path = os.path.join(output_dir, filename)
print(f"Received video type: {type(video)}")
if isinstance(video, list):
print(f"Video list length: {len(video)}")
if len(video) > 0:
print(f"First element type: {type(video[0])}")
video = np.array(video)
if isinstance(video, torch.Tensor):
video = video.cpu().numpy()
if video.ndim == 4:
if video.shape[1] == 3 or video.shape[1] == 4:
video = np.transpose(video, (0, 2, 3, 1))
elif video.ndim == 3:
video = video[np.newaxis, ...]
print(f"Video shape after preprocessing: {video.shape}")
if video.dtype != np.uint8:
video = (video * 255).astype(np.uint8)
num_frames, height, width, channels = video.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for frame in video:
if channels == 4:
frame = frame[:, :, :3]
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
print(f"Video saved to {output_path}")
return {"ui": {"text": f"Video saved to {output_path}"}}
NODE_CLASS_MAPPINGS = {
"CogVideoX Image-2-Video Extended": CogVideoXImageToVideoNodeExtended,
"CogVideoX Save Video": SaveVideoNode,
}