-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery_chatgpt4.py
65 lines (54 loc) · 2.28 KB
/
query_chatgpt4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from openai import OpenAI
from typing import Optional
import numpy as np
import tiktoken
import os
enc = tiktoken.encoding_for_model("gpt-4") # "gpt-3.5-turbo"
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
# "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"
# OPENAI_MODEL = "gpt-3.5-turbo-16k"
OPENAI_MODEL = "gpt-4"
TEMPERATURE = 0
TOP_P = 1
PROMPT_BASE = (
"Write a Python script that uses {library} to connect to a {device} {category}. Only respond with code or direct explanations"
" of the code provided, nothing else."
)
LIBRARY_DESC_PROMPT = (
"Write a rich, helpful description of {library} Python library and then provide a list of popular, commonly used instruments from the library. Give thorough explanations and insightful information about the library"
" nothing else than words."
)
PROMPT_DOCS = "Given the following documentation\n\n```{docstring}```\n\n{base_prompt}"
def query_chatgpt(
library: str, device: str, category: str, docstring: Optional[str]
) -> str:
prompt = PROMPT_BASE.format(library=library, device=device, category=category)
if docstring and docstring is not np.nan:
tokens = enc.encode(docstring)
if len(tokens) > 14_000:
docstring = enc.decode(tokens[:14_000]) + "..."
prompt = PROMPT_DOCS.format(docstring=docstring, base_prompt=prompt)
messages = [
{
"role": "system",
"content": f"You are a Python hardware engineer building code examples for {library}",
},
{"role": "user", "content": prompt},
]
response = client.chat.completions.create(
model=OPENAI_MODEL, temperature=TEMPERATURE, top_p=TOP_P, messages=messages
)
return response.choices[0].message.content
def query_python_lib_desc(library: str):
prompt = LIBRARY_DESC_PROMPT.format(library=library)
messages = [
{
"role": "system",
"content": f"You are a Python hardware engineer experienced with instruments from {library} and have made insane amount of contributions to Python libraries.",
},
{"role": "user", "content": prompt},
]
response = client.chat.completions.create(
model=OPENAI_MODEL, temperature=TEMPERATURE, top_p=TOP_P, messages=messages
)
return response.choices[0].message.content