-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathlocal_training_backing.cc
209 lines (181 loc) · 8.29 KB
/
local_training_backing.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include "local-execution/local_training_backing.h"
#include "local-execution/loss_functions.h"
#include "local-execution/optimizer.h"
#include "local-execution/task_invocation.h"
#include "local-execution/task_signature_impl.h"
#include "pcg/computation_graph.h"
#include "pcg/optimizer_attrs.h"
#include "utils/containers/contains.h"
#include "utils/containers/contains_key.h"
#include "utils/containers/get_only.h"
#include "utils/containers/reversed.h"
#include "utils/exception.h"
namespace FlexFlow {
LocalTrainingBacking::LocalTrainingBacking(
Allocator const &allocator,
ComputationGraph const &computation_graph,
TensorBackingMap const &tensor_backing_mapping,
RuntimeArgConfig const &runtime_arg_config,
std::optional<ModelTrainingInstance> const &training_instance,
std::optional<OptimizerAttrs> const &optimizer_attrs)
: allocator(allocator), computation_graph(computation_graph),
local_slots_backing(tensor_backing_mapping, runtime_arg_config),
task_registry(empty_task_registry()),
training_instance(training_instance), optimizer_attrs(optimizer_attrs) {
for (layer_guid_t const &node :
topological_ordering(this->computation_graph)) {
ComputationGraphOpAttrs attrs =
get_layer_attrs(this->computation_graph, node).attrs;
// allocate outgoing tensors
this->local_slots_backing.allocate_outgoing_tensors(
node, this->computation_graph, this->allocator);
// register tasks
register_tasks_for_layer(this->task_registry, node, attrs);
// allocate optimizer buffers
if (attrs.has<WeightAttrs>() && this->training_instance.has_value()) {
assert(this->optimizer_attrs.has_value());
TaskSignature sig = get_update_signature(this->optimizer_attrs.value());
tensor_guid_t weight_tensor =
get_only(get_outgoing_tensors(this->computation_graph, node));
this->local_slots_backing.allocate_optimizer_tensors(
node, weight_tensor, this->computation_graph, this->allocator, sig);
}
}
if (this->training_instance.has_value()) {
// label and logit tensor should be allocated
assert(this->local_slots_backing.is_tensor_allocated(
this->training_instance.value().label_tensor));
assert(this->local_slots_backing.is_tensor_allocated(
this->training_instance.value().logit_tensor));
}
}
DeviceSpecificDeviceStates
LocalTrainingBacking::call_init_task_impl(task_id_t task_id,
TaskArgumentAccessor const &acc) {
TaskSignatureAndImpl task_sig_impl =
this->task_registry.task_mapping.at(task_id);
auto fn =
task_sig_impl.impl_function.get<InitOpTaskImplFunction>().function_ptr;
return fn(acc);
}
std::optional<float>
LocalTrainingBacking::call_task_impl(task_id_t task_id,
TaskArgumentAccessor acc) {
TaskSignatureAndImpl task_sig_impl =
this->task_registry.task_mapping.at(task_id);
auto fn =
task_sig_impl.impl_function.get<FwdBwdOpTaskImplFunction>().function_ptr;
return fn(acc);
}
void LocalTrainingBacking::execute_init() {
for (layer_guid_t const &operator_node :
topological_ordering(this->computation_graph)) {
if (this->task_registry.init_task_ids.at(operator_node).has_value()) {
ComputationGraphOpAttrs attrs =
get_layer_attrs(this->computation_graph, operator_node).attrs;
OpTaskInvocation invocation = init(attrs);
TaskArgumentAccessor accessor =
this->get_op_task_arg_accessor(invocation, operator_node);
DeviceSpecificDeviceStates device_state =
this->call_init_task_impl(invocation.task_id, accessor);
this->local_slots_backing.add_per_device_op_state(operator_node,
device_state);
}
}
}
PerLayerElapsedTime LocalTrainingBacking::execute_forward() {
PerLayerElapsedTime per_op_elapsed_time;
for (layer_guid_t const &operator_node :
topological_ordering(this->computation_graph)) {
if (this->task_registry.forward_task_ids.at(operator_node).has_value()) {
ComputationGraphOpAttrs attrs =
get_layer_attrs(this->computation_graph, operator_node).attrs;
OpTaskInvocation invocation = forward(attrs);
TaskArgumentAccessor accessor =
this->get_op_task_arg_accessor(invocation, operator_node);
std::optional<float> elapsed_time =
this->call_task_impl(invocation.task_id, accessor);
per_op_elapsed_time.insert({operator_node, elapsed_time});
}
}
return per_op_elapsed_time;
}
PerLayerElapsedTime LocalTrainingBacking::execute_backward() {
PerLayerElapsedTime per_op_elapsed_time;
// compute loss
if (this->training_instance.has_value()) {
ModelTrainingInstance unwrapped_training_instance =
training_instance.value();
TaskInvocation loss_invocation =
backward(unwrapped_training_instance.loss_attrs,
unwrapped_training_instance.logit_tensor,
unwrapped_training_instance.label_tensor);
// assert(is_invocation_valid(get_loss_bwd_signature(), loss_invocation));
TaskArgumentAccessor loss_accessor =
this->get_task_arg_accessor(loss_invocation);
TaskImplFunction loss_impl_fn = get_loss_bwd_task_impl();
loss_impl_fn.get<GenericTaskImplFunction>().function_ptr(loss_accessor);
}
// backward through computation graph
for (layer_guid_t const &operator_node :
reversed(topological_ordering(this->computation_graph))) {
if (this->task_registry.backward_task_ids.at(operator_node).has_value()) {
ComputationGraphOpAttrs attrs =
get_layer_attrs(this->computation_graph, operator_node).attrs;
OpTaskInvocation invocation = backward(attrs);
TaskArgumentAccessor accessor =
this->get_op_task_arg_accessor(invocation, operator_node);
std::optional<float> elapsed_time =
this->call_task_impl(invocation.task_id, accessor);
per_op_elapsed_time.insert({operator_node, elapsed_time});
}
}
return per_op_elapsed_time;
}
void LocalTrainingBacking::execute_update() {
assert(this->training_instance.has_value());
assert(this->optimizer_attrs.has_value());
for (layer_guid_t const &node :
topological_ordering(this->computation_graph)) {
LayerAttrs layer_attrs = get_layer_attrs(this->computation_graph, node);
if (layer_attrs.attrs.has<WeightAttrs>()) {
// get tensors
tensor_guid_t weight_tensor =
get_only(get_outgoing_tensors(this->computation_graph, node));
std::vector<non_graph_tensor_guid_t> grad_buffer_tensors =
this->local_slots_backing.weight_optimizer_tensor_guids.at(node);
// get invocation
TaskInvocation invocation = get_update_invocation(
this->optimizer_attrs.value(), weight_tensor, grad_buffer_tensors);
// assert(is_invocation_valid(get_update_signature(attrs), invocation));
// execute update
TaskArgumentAccessor accessor = this->get_task_arg_accessor(invocation);
TaskImplFunction update_impl_fn =
get_update_task_impl(this->optimizer_attrs.value());
update_impl_fn.get<GenericTaskImplFunction>().function_ptr(accessor);
}
}
this->optimizer_attrs = next(this->optimizer_attrs.value());
}
TaskArgumentAccessor LocalTrainingBacking::get_task_arg_accessor(
TaskInvocation const &invocation) const {
TensorSlotsBacking tensor_slots_backing =
this->local_slots_backing.construct_tensor_slots_backing(
invocation.binding);
ArgSlotsBacking arg_slots_backing =
this->local_slots_backing.construct_arg_slots_backing(invocation.binding);
return TaskArgumentAccessor::create<LocalTaskArgumentAccessor>(
this->allocator, tensor_slots_backing, arg_slots_backing);
}
TaskArgumentAccessor LocalTrainingBacking::get_op_task_arg_accessor(
OpTaskInvocation const &invocation, layer_guid_t const &op_guid) const {
TensorSlotsBacking tensor_slots_backing =
this->local_slots_backing.construct_tensor_slots_backing(
invocation.binding, op_guid);
ArgSlotsBacking arg_slots_backing =
this->local_slots_backing.construct_arg_slots_backing(invocation.binding,
op_guid);
return TaskArgumentAccessor::create<LocalTaskArgumentAccessor>(
this->allocator, tensor_slots_backing, arg_slots_backing);
}
} // namespace FlexFlow