-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathtest_loss_e2e.cc
132 lines (118 loc) · 5.34 KB
/
test_loss_e2e.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "doctest/doctest.h"
#include "kernels/local_cuda_allocator.h"
#include "kernels/managed_ff_stream.h"
#include "kernels/managed_per_device_ff_handle.h"
#include "local-execution/local_training_backing.h"
#include "pcg/computation_graph_builder.h"
#include "pcg/optimizer_attrs.h"
#include "test_utils.h"
namespace FlexFlow {
TEST_SUITE(FF_CUDA_TEST_SUITE) {
TEST_CASE("Local Execution E2E") {
// initialize runtime configs
ManagedPerDeviceFFHandle managed_handle{};
RuntimeArgConfig runtime_arg_config = RuntimeArgConfig{
DeviceSpecific<PerDeviceFFHandle>::create(managed_handle.raw_handle()),
EnableProfiling::NO,
ProfilingSettings{/*warmup_iters=*/0, /*measure_iters=*/0}};
OptimizerAttrs optimizer_attrs = make_empty_sgd_attrs();
// construct graph
ComputationGraphBuilder cg_builder;
size_t batch_size = 10;
size_t data_dim = 100;
TensorShape input_shape = TensorShape{
TensorDims{FFOrdered<size_t>{batch_size, data_dim}}, DataType::FLOAT};
tensor_guid_t input_tensor =
cg_builder.create_tensor(input_shape, CreateGrad::YES);
float scalar = 4.0;
tensor_guid_t logit_tensor =
cg_builder.scalar_multiply(input_tensor, scalar);
// allocate memory
Allocator allocator = create_local_cuda_memory_allocator();
TensorBackingMap tensor_backing_map;
GenericTensorAccessorW input_backing =
allocator.allocate_tensor(input_shape);
tensor_backing_map.insert({input_tensor, input_backing});
SUBCASE("SparseCategoricalCrossEntropyLossAttrs") {
TensorShape label_shape = TensorShape{
TensorDims{FFOrdered<size_t>{batch_size, 1}}, DataType::FLOAT};
tensor_guid_t label_tensor =
cg_builder.create_tensor(label_shape, CreateGrad::NO);
GenericTensorAccessorW label_backing =
allocator.allocate_tensor(label_shape);
tensor_backing_map.insert({label_tensor, label_backing});
std::optional<ModelTrainingInstance> model_training_instance =
ModelTrainingInstance{
LossAttrs{SparseCategoricalCrossEntropyLossAttrs{
/*replace_labels=*/false}},
label_tensor,
logit_tensor,
optimizer_attrs};
LocalTrainingBacking local_backing(allocator,
cg_builder.computation_graph,
tensor_backing_map,
runtime_arg_config,
model_training_instance);
local_backing.execute_init();
local_backing.execute_forward();
local_backing.execute_backward();
}
SUBCASE("OtherAttrs") {
tensor_guid_t label_tensor =
cg_builder.create_tensor(input_shape, CreateGrad::NO);
GenericTensorAccessorW label_backing =
allocator.allocate_tensor(input_shape);
tensor_backing_map.insert({label_tensor, label_backing});
SUBCASE("LossFunction::CATEGORICAL_CROSSENTROPY") {
std::optional<ModelTrainingInstance> model_training_instance =
ModelTrainingInstance{LossAttrs{OtherLossAttrs{
LossFunction::CATEGORICAL_CROSSENTROPY}},
label_tensor,
logit_tensor,
optimizer_attrs};
LocalTrainingBacking local_backing(allocator,
cg_builder.computation_graph,
tensor_backing_map,
runtime_arg_config,
model_training_instance);
local_backing.execute_init();
local_backing.execute_forward();
local_backing.execute_backward();
}
SUBCASE("LossFunction::MEAN_SQUARED_ERROR_AVG_REDUCE") {
std::optional<ModelTrainingInstance> model_training_instance =
ModelTrainingInstance{
LossAttrs{OtherLossAttrs{
LossFunction::MEAN_SQUARED_ERROR_AVG_REDUCE}},
label_tensor,
logit_tensor,
optimizer_attrs};
LocalTrainingBacking local_backing(allocator,
cg_builder.computation_graph,
tensor_backing_map,
runtime_arg_config,
model_training_instance);
local_backing.execute_init();
local_backing.execute_forward();
local_backing.execute_backward();
}
SUBCASE("LossFunction::IDENTITY") {
std::optional<ModelTrainingInstance> model_training_instance =
ModelTrainingInstance{
LossAttrs{OtherLossAttrs{LossFunction::IDENTITY}},
label_tensor,
logit_tensor,
optimizer_attrs};
LocalTrainingBacking local_backing(allocator,
cg_builder.computation_graph,
tensor_backing_map,
runtime_arg_config,
model_training_instance);
local_backing.execute_init();
local_backing.execute_forward();
local_backing.execute_backward();
}
}
}
}
} // namespace FlexFlow