-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPlotting-from-database.Rmd
413 lines (271 loc) · 7.79 KB
/
Plotting-from-database.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
---
title: "Plotting Data from Databases in R"
subtitle: "<br/>Introducing dbplot"
author: "StatistikinDD"
date: "Created: `r Sys.time()`"
output:
xaringan::moon_reader:
chakra: libs/remark-latest.min.js
lib_dir: libs
css: ["libs/_css/my_css.css"]
nature:
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
slideNumberFormat: "%current%"
ratio: 16:9
---
class: inverse, agenda
```{r setup, include = FALSE}
options(htmltools.dir.version = FALSE)
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE, comment = "")
library(tsortmusicr)
library(tidyverse)
library(dbplot)
library(DBI)
library(knitr)
# library(DT)
# library(widgetframe)
library(ggthemes)
```
# Plotting from Databases in R
### 1. How to plot data from a database *efficiently*
### 2. Chart success data: tsort.info
### 3. Setting up an In-Memory Database
### 4. Bar Plot Examples
### 5. Histogram
### 6. Scatter Plot vs. Raster Plot
---
# Plotting from Databases in R
## How to do it *efficiently*
* Data in databases is often large
* Bottleneck: How much data is transferred from database to R
* Visualizations often only require **aggregated data**
### Best practice
1. Run data transformation within database
2. Plot results (aggregated data) from R
---
# Chart success data: tsort.info
```{r read_data, message = FALSE}
music <- readRDS("musicdata.rds")
```
* Data: 71291 songs and albums
* Source: https://tsort.info
* Version: `r attr(music, "version")`
* Size of dataset: `r format(object.size(music), units = "Mb")`
--
```{r data-head}
music %>%
select(artist, name, type, year, score) %>%
arrange(desc(score)) %>%
head(n = 7) %>%
kable()
```
---
# Creating an In-Memory Database
```{r database-setup, echo = TRUE}
con <- DBI::dbConnect(RSQLite::SQLite(), dbname = ":memory:")
dplyr::copy_to(con, music, "musicdb",
temporary = FALSE,
indexes = list(
c("year", "score")
)
)
musicdb <- tbl(con, "musicdb")
class(musicdb)
```
---
# Count Frequencies: Bar Plot
We filter down to the Top 5 most successful artists / bands in terms of total score.
.pull-left[
```{r barplot1, echo = TRUE, eval = FALSE}
top5 <- musicdb %>%
filter(artist != "Original Soundtrack") %>%
group_by(artist) %>%
summarise(total = sum(score)) %>%
slice_max(order_by = total, n = 5) %>%
pull(artist)
theme_set(theme_economist(base_size = 14))
musicdb %>%
filter(artist %in% top5) %>%
ggplot(aes(x = fct_infreq(artist))) +
geom_bar() + #<<
labs(title = "Top 5: # Songs and Albums",
x = "")
```
* geom_bar() calculates summary statistics in R.
* Inefficient: Each selected song / album pulled to R's memory!
]
.pull-right[
```{r barplot1_exec, ref.label = "barplot1"}
```
]
---
# Bar Plot: Calculate in DB, Manually
We can calculate summary statistics manually, and pull only aggregated data into R's memory:
.pull-left[
```{r barplot2, echo = TRUE, eval = FALSE}
musicdb %>%
filter(artist %in% top5) %>%
group_by(artist) %>%
tally() %>%
arrange(desc(n)) %>%
collect() %>%
ggplot(aes(x = fct_inorder(artist))) +
geom_col(aes(y = n)) + #<<
labs(title = "Top 5: # Songs and Albums",
x = "")
```
* geom_col() uses pre-computed summary data
* Efficient: Only 5 data points pulled to R's memory
* Downside: Tedious to calculate manually
* -> Better yet: Use a dedicated package!
]
.pull-right[
```{r barplot2_exec, ref.label = "barplot2"}
```
]
---
# The dbplot Package
.pull-left[
dbplot by **Edgar Ruiz** offers plotting functions that
**automatically calculate summary statistics in the DB**
```{r dbplot-logo, out.height = "60%", out.width = "60%"}
include_graphics("libs/_Images/logo-dbplot.png")
```
```{r dbplot1, echo = TRUE, eval = FALSE}
musicdb %>%
filter(artist %in% top5) %>%
dbplot_bar(artist) + #<<
labs(title = "Top 5: # Songs and Albums",
x = "", y = "n")
```
* Order of bars not so easy to adjust
* Not all functions available for in-database-calculations
]
.pull-right[
```{r dbplot1_exec, ref.label = "dbplot1"}
```
]
---
# dbplot: In-Database Calculations
.pull-left[
## Calculate Counts Easily
```{r db-compute-count, echo = TRUE, eval = FALSE}
musicdb %>%
filter(artist %in% top5) %>%
db_compute_count(artist) %>% #<<
arrange(desc(`n()`)) %>%
ggplot(aes(x = fct_inorder(artist), y = `n()`)) +
geom_col() + #<<
labs(title = "Top 5: # Songs and Albums",
x = "", y = "n")
```
* Using geom_col() again, as summary statistics are pre-calculated
* Now we can use forcats::fct_inorder() or similar functions
* Only 5 rows of data pulled into R's memory
]
.pull-right[
```{r db-compute-count-exec, ref.label = "db-compute-count"}
```
]
---
# dbplot: Histogram
Here's a histogram example: Years in which songs and albums were published.
.pull-left[
```{r histogram, echo = TRUE, eval = FALSE}
musicdb %>%
dbplot_histogram(year, bins = 40) + #<<
labs(title = "Histogram of Years",
subtitle = "Publication of Songs / Albums")
```
* Again, only aggregated data pulled into R
]
.pull-right[
```{r histogram_exec, ref.label = "histogram"}
```
]
---
# An Inefficient Scatterplot
.pull-left[
```{r score-summary}
musicdb %>%
summarise(min = min(score),
# q1 = quantile(score, 0.25),
median = median(score),
mean = mean(score),
# q3 = quantile(score, 0.75),
max = max(score)) %>%
kable(caption = "Distribution of Scores")
```
```{r scatterplot, eval = FALSE, echo = TRUE}
musicdb %>%
ggplot(aes(x = year, y = score)) +
geom_point(alpha = 0.1) + #<<
labs(title = "Scores by Year",
subtitle = "Scatterplot")
```
* Needs access to all data points in R
* May take long to execute (data transfer and plotting)
]
.pull-right[
```{r scatterplot-exec, ref.label = "scatterplot"}
```
]
---
# More Efficient: A Raster Plot
.pull-left[
```{r raster-plot, echo = TRUE, eval = FALSE}
musicdb %>%
dbplot_raster(x = year, y = score, #<<
resolution = 40) + #<<
labs(title = "Scores by Year",
subtitle = "Raster Plot") +
theme(legend.key.width = unit(3, "cm"),
legend.position = "bottom")
```
* Parameter *resolution* in dbplot_raster():
number of bins by variable
* Can provide different aggregation function in *fill* parameter. Defaults to count.
* Much quicker to execute.
* Same conclusion: Majority of values in low score range.
]
.pull-right[
```{r raster-plot-exec, ref.label = "raster-plot"}
```
]
---
# dbplot: Main Functions
.pull-left[
## Plotting functions
* dbplot_bar()
* dbplot_histogram()
* dbplot_line()
* dbplot_raster()
* dbplot_boxplot()
]
.pull-right[
## Calculation functions
* db_compute_count()
* db_compute_bins()
* db_compute_raster()
* db_compute_raster2():
Adds coordinates of x/y boxes
* db_compute_boxplot()
]
---
class: center, middle
# Credit to the awesome RStudio Team.
### For more information see https://db.rstudio.com/
### Specifically: Best Practices - Creating Visualizations
```{r tidy-up}
DBI::dbDisconnect(con)
```
---
class: center, middle
# Thanks!
### Youtube: StatistikinDD
### Twitter: @StatistikinDD
### github: fjodor
Slides created via the R package [**xaringan**](https://github.com/yihui/xaringan).
The chakra comes from [remark.js](https://remarkjs.com), [**knitr**](https://yihui.org/knitr), and [R Markdown](https://rmarkdown.rstudio.com).