-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmodels.py
665 lines (559 loc) · 25.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
def max_likelihood_one_step(likelihood, opt):
loss = -1.0 * likelihood
loss.backward()
opt.step()
opt.zero_grad()
def cross_ent_one_step(ent_loss, opt):
ent_loss.backward()
opt.step()
opt.zero_grad()
class MvtHawkes(torch.nn.Module):
"""
Multivariate Hawkes Process
"""
def __init__(self, n_event_type, first_occurrence_only=False, mu_vec_np=None, alpha_mat_np=None,
lambda_mat_np=None):
super().__init__()
self.n_event_type = n_event_type
self.dtype = torch.float32
self.first_occurrence_only = first_occurrence_only
self.mu_vec = None
self.alpha_mat = None
self.lambda_mat = None
self._initialize_parameters(mu_vec_np, alpha_mat_np, lambda_mat_np)
# data
self.seq_time_to_end = None
self.seq_time_to_current = None
self.seq_type_event = None
self.time_since_start_to_end = None
self.seq_mask = None
self.seq_mask_to_current = None
self.intensity_mask = None
self.event_time_to_end = None
# temp results
self.alpha_over_seq = None
self.lambda_over_seq = None
self.integral_varying = None
self.integral_constant = None
self.sum_log_activation = None
# loss and eval metrics
self.cross_ent_loss_seq = None
self.likelihood_seq = None
def set_input(self,
seq_time_to_end,
seq_time_to_current,
seq_type_event,
time_since_start_to_end,
seq_mask,
seq_mask_to_current,
intensity_mask=None,
event_time_to_end=None,
static_context=None):
assert static_context is not None
self.seq_time_to_end = seq_time_to_end
self.seq_time_to_current = seq_time_to_current
self.seq_type_event = seq_type_event
self.time_since_start_to_end = time_since_start_to_end
self.seq_mask = seq_mask
self.seq_mask_to_current = seq_mask_to_current
if self.first_occurrence_only:
self.intensity_mask = intensity_mask
self.event_time_to_end = event_time_to_end
else:
self.intensity_mask = None
self.event_time_to_end = None
def _initialize_parameters(self, mu_vec_np=None, alpha_mat_np=None, lambda_mat_np=None):
if mu_vec_np is None:
mu_vec_np = np.random.uniform(0, 1, self.n_event_type)
if alpha_mat_np is None:
alpha_mat_np = np.random.uniform(0, 1, (self.n_event_type, self.n_event_type))
if lambda_mat_np is None:
lambda_mat_np = np.random.uniform(0, 1, (self.n_event_type, self.n_event_type))
def _map_np_to_torch_parameter(np_array):
return nn.Parameter(torch.tensor(np_array, dtype=self.dtype, requires_grad=True))
self.mu_vec, self.alpha_mat, self.lambda_mat = map(
_map_np_to_torch_parameter, (mu_vec_np, alpha_mat_np, lambda_mat_np)
)
def _update_alpha_lambda_over_seq(self):
seq_type_event = self.seq_type_event
intensity_mask = self.intensity_mask
if intensity_mask is None:
self.alpha_over_seq = torch.exp(self.alpha_mat[:, seq_type_event])
self.lambda_over_seq = torch.exp(self.lambda_mat[:, seq_type_event])
else:
self.alpha_over_seq = torch.exp(self.alpha_mat[:, seq_type_event]) * intensity_mask
self.lambda_over_seq = torch.exp(self.lambda_mat[:, seq_type_event]) * intensity_mask
def reg_alpha_mat_l1(self, strength=1.0):
return torch.sum(torch.exp(self.alpha_mat)) * strength
def _update_integral_varying(self):
seq_time_to_end = self.seq_time_to_end
seq_mask = self.seq_mask
intensity_mask = self.intensity_mask
event_time_to_end = self.event_time_to_end
if event_time_to_end is None:
# K, T, Batch
time_integral = seq_time_to_end[None, :, :]
else:
time_integral = (seq_time_to_end[None, :, :] - event_time_to_end[:, None, :]) * intensity_mask
term_3 = torch.sum(
torch.sum(
(
(
np.float32(1.0) - torch.exp(-self.lambda_over_seq * time_integral)
) * self.alpha_over_seq
),
dim=0
) * seq_mask,
dim=0
)
self.integral_varying = term_3
def _update_integral_constant(self):
time_since_start_to_end = self.time_since_start_to_end
event_time_to_end = self.event_time_to_end
if event_time_to_end is None:
term_2 = torch.sum(torch.exp(self.mu_vec)) * time_since_start_to_end
else:
term_2 = torch.sum(torch.exp(self.mu_vec)[:, None] * (time_since_start_to_end[None, :] - event_time_to_end))
self.integral_constant = term_2
def _get_constant_term(self):
if self.mu_vec.dim() == 1:
const_term = torch.exp(self.mu_vec)[:, None, None]
else:
raise ValueError('Dimension of mu_vec is not 1.')
return const_term
def get_prediction(self):
seq_mask_to_current = self.seq_mask_to_current
seq_time_to_current = self.seq_time_to_current
assert not self.first_occurrence_only
self._update_alpha_lambda_over_seq()
lambda_over_seq = self._get_constant_term() + torch.sum(
(
seq_mask_to_current[None, :, :, :]
* (
self.alpha_over_seq[:, None, :, :] * self.lambda_over_seq[:, None, :, :] * torch.exp(
-self.lambda_over_seq[:, None, :, :] * seq_time_to_current[None, :, :, :]
)
)
)
, dim=2
)
total_lambda_over_seq = torch.sum(lambda_over_seq, dim=0)
lambda_ratio_over_seq = lambda_over_seq / total_lambda_over_seq
return lambda_ratio_over_seq
def next_event_time(self, n_sims):
time_diffs = torch.empty(n_sims, dtype=self.seq_time_to_current.dtype, device=self.seq_time_to_current.device)
nn.init.uniform_(time_diffs, 0., 5.)
time_diffs, _ = torch.sort(time_diffs)
seq_time_to_current = self.seq_time_to_current[-1, :, :]
# T x batch x M
seq_time_to_current = seq_time_to_current[None, :, :, None] + time_diffs[None, None, None, :]
self._update_alpha_lambda_over_seq()
# n_event_type x batch x M
lambda_over_seq = self._get_constant_term() + torch.sum(
(
self.alpha_over_seq[:, :, :, None] * self.lambda_over_seq[:, :, :, None] * torch.exp(
-self.lambda_over_seq[:, :, :, None] * seq_time_to_current
)
)
, dim=1 # sum over t
)
# size_batch * M: lambda_sum_each_step
lambda_sum_each_step = torch.sum(lambda_over_seq, dim=0)
cum_num = torch.arange(time_diffs.shape[0] + 1, device=lambda_over_seq.device)[1:] * 1.0
# M
term_2 = torch.exp(
(-1.0 * torch.cumsum(lambda_sum_each_step, dim=1) / cum_num[None, :]) * time_diffs[None, :]
)
# size_batch * M
term_3 = lambda_sum_each_step
density = term_2 * term_3 + 1E-9
# size_batch * M
# time_prediction_each_step = torch.mean(
# term_1[None, :] * density, dim=1
# ) * time_diffs[-1]
# size_batch
pred_time = torch.sum(time_diffs[None, :] * density, dim=1) / (torch.sum(density, dim=1))
# T x B
seq_time_to_current = self.seq_time_to_current[-1, :, :] + pred_time[None, :]
# Evt x B
lambda_next_event = self._get_constant_term()[:, :, 0] + torch.sum(
(
self.alpha_over_seq * self.lambda_over_seq * torch.exp(
-self.lambda_over_seq * seq_time_to_current[None, :, :])
)
, dim=1 # sum over t
)
total_lambda_over_seq = torch.sum(lambda_next_event, dim=0) + 1E-9
pred_score = lambda_next_event / total_lambda_over_seq
_, pred_event = torch.max(pred_score, dim=0)
pred_time = pred_time + self.time_since_start_to_end
return pred_time, pred_event, pred_score # , lambda_over_seq, density, time_diffs
def update_state_given_event(self, pred_time, pred_event):
# B; Evt x B
time_delta = pred_time - self.time_since_start_to_end
# T + 1 x B
self.seq_time_to_end = nn.functional.pad(self.seq_time_to_end + time_delta[None, :], (0, 0, 0, 1))
# T + 1 x T + 1 x B
self.seq_time_to_current = nn.functional.pad(self.seq_time_to_current, (0, 0, 0, 1, 0, 1))
self.seq_time_to_current[-1, :, :] = self.seq_time_to_end - self.seq_time_to_end[-1, :]
# T + 1 x B
self.seq_type_event = torch.cat([self.seq_type_event, pred_event[None, :]], dim=0)
# B
self.time_since_start_to_end = pred_time
# T + 1 x B
self.seq_mask = nn.functional.pad(self.seq_mask, (0, 0, 0, 1), value=1.)
# T + 1 x T + 1 x B
self.seq_mask_to_current = nn.functional.pad(self.seq_mask_to_current, (0, 0, 0, 1, 0, 1), value=1.)
self.seq_mask_to_current[:, -1, :] = 0.
def get_prediction_cross_ent_loss(self):
seq_type_event = self.seq_type_event
seq_mask = self.seq_mask
pred = self.get_prediction()
mvt_pred_log = torch.log(pred).permute((2, 0, 1))
loss_target = seq_type_event.permute((1, 0))
nll_loss = torch.nn.functional.nll_loss(mvt_pred_log, loss_target, reduction='none').permute((1, 0))
self.cross_ent_loss_seq = torch.sum(nll_loss * seq_mask, dim=0)
sum_loss = torch.sum(self.cross_ent_loss_seq)
return sum_loss
def get_prediction_cross_ent_loss_ignore_first(self):
seq_type_event = self.seq_type_event
seq_mask = self.seq_mask
seq_mask[0, :] = 0
pred = self.get_prediction()
mvt_pred_log = torch.log(pred).permute((2, 0, 1))
loss_target = seq_type_event.permute((1, 0))
nll_loss = torch.nn.functional.nll_loss(mvt_pred_log, loss_target, reduction='none').permute((1, 0))
self.cross_ent_loss_seq = torch.sum(nll_loss * seq_mask, dim=0)
sum_loss = torch.sum(self.cross_ent_loss_seq)
return sum_loss
def _update_sum_log_activation(self):
seq_mask_to_current = self.seq_mask_to_current
seq_time_to_current = self.seq_time_to_current
seq_type_event = self.seq_type_event
seq_mask = self.seq_mask
lambda_over_seq = self._get_constant_term() + torch.sum(
(
seq_mask_to_current[None, :, :, :]
* (
self.alpha_over_seq[:, None, :, :] * self.lambda_over_seq[:, None, :, :] * torch.exp(
-self.lambda_over_seq[:, None, :, :] * seq_time_to_current[None, :, :, :]
)
)
)
, dim=2
)
new_shape_0 = lambda_over_seq.shape[1] * lambda_over_seq.shape[2]
new_shape_1 = lambda_over_seq.shape[0]
back_shape_0 = lambda_over_seq.shape[1]
back_shape_1 = lambda_over_seq.shape[2]
lambda_target_over_seq = lambda_over_seq.permute(
(1, 2, 0)
).reshape(
(
new_shape_0, new_shape_1
)
)[
np.arange(new_shape_0),
seq_type_event.flatten()
].reshape(
(back_shape_0, back_shape_1)
)
log_lambda_target_over_seq = torch.log(lambda_target_over_seq * 100.0 + 1e-9) - torch.log(torch.tensor(100.0))
log_lambda_target_over_seq *= seq_mask
term_1 = torch.sum(log_lambda_target_over_seq, dim=0)
self.sum_log_activation = term_1
def get_likelihood_seq(self):
self._update_alpha_lambda_over_seq()
self._update_integral_constant()
self._update_integral_varying()
self._update_sum_log_activation()
likelihood_seq = self.sum_log_activation - self.integral_constant - self.integral_varying
self.likelihood_seq = likelihood_seq
return likelihood_seq
def forward(self):
likelihood_seq = self.get_likelihood_seq()
likelihood = torch.sum(likelihood_seq)
return likelihood
class CHawkes(MvtHawkes):
"""
Contextual Hawkes Process
"""
def __init__(self, n_event_type, n_context_dim, first_occurrence_only=False, mu_vec_np=None, alpha_mat_np=None,
lambda_mat_np=None):
super().__init__(n_event_type, first_occurrence_only, mu_vec_np, alpha_mat_np, lambda_mat_np)
self.lin = nn.Linear(n_context_dim, n_event_type)
self.static_context = None
def set_input(self,
seq_time_to_end,
seq_time_to_current,
seq_type_event,
time_since_start_to_end,
seq_mask,
seq_mask_to_current,
intensity_mask=None,
event_time_to_end=None,
static_context=None):
assert static_context is not None
self.seq_time_to_end = seq_time_to_end
self.seq_time_to_current = seq_time_to_current
self.seq_type_event = seq_type_event
self.time_since_start_to_end = time_since_start_to_end
self.seq_mask = seq_mask
self.seq_mask_to_current = seq_mask_to_current
self.static_context = static_context
if self.first_occurrence_only:
self.intensity_mask = intensity_mask
self.event_time_to_end = event_time_to_end
else:
self.intensity_mask = None
self.event_time_to_end = None
self._update_mu()
def _initialize_parameters(self, mu_vec_np=None, alpha_mat_np=None, lambda_mat_np=None):
if alpha_mat_np is None:
alpha_mat_np = np.random.uniform(0, 1, (self.n_event_type, self.n_event_type))
if lambda_mat_np is None:
lambda_mat_np = np.random.uniform(0, 1, (self.n_event_type, self.n_event_type))
def _map_np_to_torch_parameter(np_array):
return nn.Parameter(torch.tensor(np_array, dtype=self.dtype, requires_grad=True))
self.alpha_mat, self.lambda_mat = map(
_map_np_to_torch_parameter, (alpha_mat_np, lambda_mat_np)
)
def _update_mu(self):
"""
Update the context-dependent mu vector
:param static_context: the context tensor (n_context_dim, batch_size)
:return: None
"""
static_context = self.static_context
# input to lin: batch_size * n_context_dim
# mu_vec: n_event_type * batch_size
self.mu_vec = torch.exp(self.lin(static_context.t())).t()
def _update_integral_constant(self):
time_since_start_to_end = self.time_since_start_to_end
event_time_to_end = self.event_time_to_end
if event_time_to_end is None:
term_2 = torch.sum(self.mu_vec, dim=0) * time_since_start_to_end
else:
term_2 = torch.sum(self.mu_vec * (time_since_start_to_end[None, :] - event_time_to_end))
self.integral_constant = term_2
def _get_constant_term(self):
if self.mu_vec.dim() == 2:
# K x T x Batch_size
const_term = self.mu_vec[:, None, :]
else:
raise ValueError('Dimension of mu_vec is not 2.')
return const_term
class GraphHawkes(CHawkes):
def __init__(self, n_event_type, n_context_dim, first_occurrence_only=False, mu_vec_np=None, alpha_mat_np=None,
lambda_mat_np=None, embedding_size=10, rnn_hidden_size=10):
super().__init__(n_event_type, n_context_dim, first_occurrence_only, mu_vec_np, alpha_mat_np, lambda_mat_np)
self.embeding = nn.Embedding(n_event_type, embedding_size)
self.rnn = nn.LSTM(embedding_size, rnn_hidden_size)
self.rnn_lin = nn.Linear(rnn_hidden_size, 1)
self.graph_weights_to_current = None
self.graph_weights_seq = None
def set_input(self,
seq_time_to_end,
seq_time_to_current,
seq_type_event,
time_since_start_to_end,
seq_mask,
seq_mask_to_current,
intensity_mask=None,
event_time_to_end=None,
static_context=None):
super().set_input(
seq_time_to_end,
seq_time_to_current,
seq_type_event,
time_since_start_to_end,
seq_mask,
seq_mask_to_current,
intensity_mask,
event_time_to_end,
static_context)
self._update_graph_weights()
def _update_graph_weights(self):
seq_type_event = self.seq_type_event
seq_mask_to_current = self.seq_mask_to_current
# n_event_type: T * batch_size
# event_embedding: T * batch_size * K
event_embedding = self.embeding(seq_type_event)
# rnn_output: T * batch_size * rnn_hidden_size
rnn_output, _ = self.rnn(event_embedding)
# graph_weights: T * batch_size
# activation function
graph_weights = torch.sigmoid(self.rnn_lin(rnn_output)).reshape(rnn_output.shape[:2])
self.graph_weights_seq = graph_weights
self.graph_weights_to_current = graph_weights[None, :, :] * seq_mask_to_current
def reg_graph_weights_l1(self, strength=1.0):
return torch.sum(self.graph_weights_seq) * strength
def _update_sum_log_activation(self):
seq_mask_to_current = self.seq_mask_to_current
seq_time_to_current = self.seq_time_to_current
seq_type_event = self.seq_type_event
seq_mask = self.seq_mask
lambda_over_seq = self._get_constant_term() + torch.sum(
(
seq_mask_to_current[None, :, :, :]
* (
self.alpha_over_seq[:, None, :, :] * self.graph_weights_to_current[None, :, :,
:] * self.lambda_over_seq[:, None, :, :] * torch.exp(
-self.lambda_over_seq[:, None, :, :] * seq_time_to_current[None, :, :, :]
)
)
)
, dim=2
)
new_shape_0 = lambda_over_seq.shape[1] * lambda_over_seq.shape[2]
new_shape_1 = lambda_over_seq.shape[0]
back_shape_0 = lambda_over_seq.shape[1]
back_shape_1 = lambda_over_seq.shape[2]
lambda_target_over_seq = lambda_over_seq.permute(
(1, 2, 0)
).reshape(
(
new_shape_0, new_shape_1
)
)[
np.arange(new_shape_0),
seq_type_event.flatten()
].reshape(
(back_shape_0, back_shape_1)
)
log_lambda_target_over_seq = torch.log(lambda_target_over_seq * 100.0 + 1e-9) - torch.log(torch.tensor(100.0))
log_lambda_target_over_seq *= seq_mask
term_1 = torch.sum(log_lambda_target_over_seq, dim=0)
self.sum_log_activation = term_1
def _update_integral_varying(self):
seq_time_to_end = self.seq_time_to_end
seq_mask = self.seq_mask
intensity_mask = self.intensity_mask
event_time_to_end = self.event_time_to_end
if event_time_to_end is None:
# K, T, Batch
time_integral = seq_time_to_end[None, :, :]
else:
time_integral = (seq_time_to_end[None, :, :] - event_time_to_end[:, None, :]) * intensity_mask
term_3 = torch.sum(
torch.sum(
(
(
np.float32(1.0) - torch.exp(-self.lambda_over_seq * time_integral)
) * self.alpha_over_seq * self.graph_weights_seq[None, :, :]
),
dim=0
) * seq_mask,
dim=0
)
self.integral_varying = term_3
def get_prediction(self):
seq_mask_to_current = self.seq_mask_to_current
seq_time_to_current = self.seq_time_to_current
seq_type_event = self.seq_type_event
seq_mask = self.seq_mask
assert not self.first_occurrence_only
self._update_alpha_lambda_over_seq()
lambda_over_seq = self._get_constant_term() + torch.sum(
(
seq_mask_to_current[None, :, :, :]
* (
self.alpha_over_seq[:, None, :, :] * self.graph_weights_to_current[None, :, :,
:] * self.lambda_over_seq[:, None, :, :] * torch.exp(
-self.lambda_over_seq[:, None, :, :] * seq_time_to_current[None, :, :, :]
)
)
)
, dim=2
) # * seq_mask
total_lambda_over_seq = torch.sum(lambda_over_seq, dim=0)
lambda_ratio_over_seq = lambda_over_seq / total_lambda_over_seq
return lambda_ratio_over_seq
def next_event_time(self, n_sims):
time_diffs = torch.empty(n_sims, dtype=self.seq_time_to_current.dtype, device=self.seq_time_to_current.device)
nn.init.uniform_(time_diffs, 0., 5.)
time_diffs, _ = torch.sort(time_diffs)
seq_time_to_current = self.seq_time_to_current[-1, :, :]
# T x batch x M
seq_time_to_current = seq_time_to_current[None, :, :, None] + time_diffs[None, None, None, :]
self._update_alpha_lambda_over_seq()
xbb = (self.alpha_over_seq[:, :, :, None] * self.graph_weights_seq[None, :, :, None] * self.lambda_over_seq[:,
:, :, None]) * torch.exp(
-self.lambda_over_seq[:, :, :, None] * seq_time_to_current
)
# Evt x Batch_size
const = self._get_constant_term()[:, 0, :]
lambda_over_seq = const[:, :, None] + torch.sum(xbb, dim=1)
# size_batch * M: lambda_sum_each_step
lambda_sum_each_step = torch.sum(lambda_over_seq, dim=0)
cum_num = torch.arange(time_diffs.shape[0] + 1, device=lambda_over_seq.device)[1:] * 1.0
# M
term_2 = torch.exp(
(-1.0 * torch.cumsum(lambda_sum_each_step, dim=1) / cum_num[None, :]) * time_diffs[None, :]
)
# size_batch * M
term_3 = lambda_sum_each_step
density = term_2 * term_3 + 1E-9
# size_batch * M
# time_prediction_each_step = torch.mean(
# term_1[None, :] * density, dim=1
# ) * time_diffs[-1]
# size_batch
pred_time = torch.sum(time_diffs[None, :] * density, dim=1) / (torch.sum(density, dim=1))
# T x B
seq_time_to_current = self.seq_time_to_current[-1, :, :] + pred_time[None, :]
# Evt x B
lambda_next_event = const + torch.sum(
(
self.alpha_over_seq * self.lambda_over_seq * self.graph_weights_seq[None, :, :] * torch.exp(
-self.lambda_over_seq * seq_time_to_current[None, :, :])
)
, dim=1 # sum over t
)
total_lambda_over_seq = torch.sum(lambda_next_event, dim=0) + 1E-9
pred_score = lambda_next_event / total_lambda_over_seq
_, pred_event = torch.max(pred_score, dim=0)
pred_time = pred_time + self.time_since_start_to_end
return pred_time, pred_event, pred_score
def update_state_given_event(self, pred_time, pred_event):
super(GraphHawkes, self).update_state_given_event(pred_time, pred_event)
self._update_graph_weights()
class DDP(GraphHawkes):
"""
DDP model
"""
def __init__(self, n_event_type, n_context_dim, first_occurrence_only=False, mu_vec_np=None, alpha_mat_np=None,
lambda_mat_np=None, embedding_size=10, rnn_hidden_size=10, gap_mean=0, gap_scale=1):
super().__init__(n_event_type, n_context_dim, first_occurrence_only, mu_vec_np, alpha_mat_np, lambda_mat_np)
self.gap_mean = gap_mean
self.gap_scale = gap_scale
self.embeding = nn.Embedding(n_event_type, embedding_size)
# + 1 for time gap
self.rnn = nn.LSTM(embedding_size + 1, rnn_hidden_size)
self.rnn_lin = nn.Linear(rnn_hidden_size, 1)
self.graph_weights_to_current = None
self.graph_weights_seq = None
def _update_graph_weights(self):
seq_type_event = self.seq_type_event
seq_mask_to_current = self.seq_mask_to_current
seq_time_to_end = self.seq_time_to_end
# n_event_type: T * batch_size
# event_embedding: T * batch_size * K
event_embedding = self.embeding(seq_type_event)
# time_gap: T * batch_size
# (T - 1) * batch_size
time_diff = (seq_time_to_end[:-1, :] - seq_time_to_end[1:, :] - self.gap_mean) / self.gap_scale
init_time_diff = time_diff.new_zeros((1, time_diff.shape[1]))
time_diff_input = torch.cat((init_time_diff, time_diff))
rnn_input = torch.cat((event_embedding, time_diff_input[:, :, None]), dim=2)
# rnn_output: T * batch_size * rnn_hidden_size
rnn_output, _ = self.rnn(rnn_input)
# graph_weights: T * batch_size
# activation function
graph_weights = torch.sigmoid(self.rnn_lin(rnn_output)).reshape(rnn_output.shape[:2])
self.graph_weights_seq = graph_weights
self.graph_weights_to_current = graph_weights[None, :, :] * seq_mask_to_current