-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpapers.Rmd
42 lines (37 loc) · 1.15 KB
/
papers.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
docname: Publications
name: Fan Cheng
address: "Department of Econometrics & Business Statistics,\\tabularnewline Monash University, VIC 3800, Australia."
www: fancheng.me
# phone: +61 3 9905 1385
email: "[email protected]"
twitter: fanchengfc
github: ffancheng
linkedin: fan-cheng
date: "`r format(Sys.time(), '%B %Y')`"
headcolor: "880020"
output:
vitae::hyndman
keep_tex: true
header_includes:
- \ExecuteBibliographyOptions{useprefix=true}
- renewcommand{\bibfont}{\normalfont\fontsize{12}{15}\sffamily}
- \usepackage{hanging}
- \parindent=0pt
- \parskip=\medskipamount
# - \pagenumbering{gobble}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(tidyverse)
library(vitae)
source("baretable.R")
```
\thispagestyle{empty}
# Working papers
\hangindent=2em
\hangafter=1
Cheng, F., Hyndman, R. J., & Panagiotelis, A. (2021). Computationally Efficient Learning of Statistical Manifolds. arXiv preprint arXiv:2103.11773. (Under review)
\hangindent=2em
\hangafter=1
Cheng, F., Hyndman, R. J., & Panagiotelis, A. (2022). Distortion-Corrected Kernel Density Estimate on Riemannian Manifolds.