diff --git a/.github/workflows/install.yml b/.github/workflows/install.yml index a09cf22..4559d3e 100755 --- a/.github/workflows/install.yml +++ b/.github/workflows/install.yml @@ -12,7 +12,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: [ 3.6, 3.7 ] + python-version: [3.7] steps: - name: Set up Python ${{ matrix.python-version }} diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 9cbcc30..0ed28da 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -12,8 +12,8 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: [3.6, 3.7] - tensorflow-version: [2.1, 2.2] + python-version: [3.7] + tensorflow-version: [2.9] steps: - uses: actions/checkout@v2 - name: Set up Python ${{ matrix.python-version }} @@ -61,8 +61,8 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: [3.6, 3.7] - tensorflow-version: [2.1, 2.2] + python-version: [3.7] + tensorflow-version: [2.9] steps: - uses: actions/checkout@v2 - name: Set up Python ${{ matrix.python-version }} @@ -110,7 +110,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: [3.6, 3.7] + python-version: [3.7] steps: - uses: actions/checkout@v2 - name: Set up Python ${{ matrix.python-version }} diff --git a/README.md b/README.md index 8016ca1..ceed0bb 100644 --- a/README.md +++ b/README.md @@ -95,7 +95,7 @@ The [notebooks](notebooks) section provides some examples. For instance, just ru ```python import tensorflow as tf import tensorflow_datasets as tfds -from tensorflow.keras.models import Sequential +from keras.models import Sequential from keras_fsl.models.encoders import BasicCNN from keras_fsl.layers import GramMatrix diff --git a/keras_fsl/callbacks/binary_statistics.py b/keras_fsl/callbacks/binary_statistics.py index dda6c69..08cfc9e 100644 --- a/keras_fsl/callbacks/binary_statistics.py +++ b/keras_fsl/callbacks/binary_statistics.py @@ -2,7 +2,7 @@ import numpy as np import tensorflow as tf from matplotlib.backends.backend_agg import FigureCanvasAgg -from tensorflow.keras.callbacks import Callback +from keras.callbacks import Callback class BinaryStatistics(Callback): diff --git a/keras_fsl/layers/centroids_matrix.py b/keras_fsl/layers/centroids_matrix.py index c92c0e9..e9cdea8 100644 --- a/keras_fsl/layers/centroids_matrix.py +++ b/keras_fsl/layers/centroids_matrix.py @@ -1,5 +1,5 @@ import tensorflow as tf -from tensorflow.keras import activations +from keras import activations from keras_fsl.layers.support_layer import SupportLayer diff --git a/keras_fsl/layers/classification.py b/keras_fsl/layers/classification.py index 8a3a9bd..efb2280 100644 --- a/keras_fsl/layers/classification.py +++ b/keras_fsl/layers/classification.py @@ -1,5 +1,5 @@ import tensorflow as tf -from tensorflow.keras.layers import Layer +from keras.layers import Layer from keras_fsl.losses import class_consistency_loss diff --git a/keras_fsl/layers/slicing.py b/keras_fsl/layers/slicing.py index a317a97..e8ea9fe 100644 --- a/keras_fsl/layers/slicing.py +++ b/keras_fsl/layers/slicing.py @@ -1,5 +1,5 @@ -from tensorflow.keras import Sequential -from tensorflow.keras.layers import Lambda, Flatten +from keras import Sequential +from keras.layers import Lambda, Flatten def CenterSlicing2D(): diff --git a/keras_fsl/layers/support_layer.py b/keras_fsl/layers/support_layer.py index dc1ed32..e17e4a7 100644 --- a/keras_fsl/layers/support_layer.py +++ b/keras_fsl/layers/support_layer.py @@ -1,5 +1,5 @@ import tensorflow as tf -from tensorflow.keras.layers import Layer +from keras.layers import Layer from keras_fsl.models import head_models diff --git a/keras_fsl/losses/gram_matrix_losses.py b/keras_fsl/losses/gram_matrix_losses.py index e7362c3..5db4fe7 100644 --- a/keras_fsl/losses/gram_matrix_losses.py +++ b/keras_fsl/losses/gram_matrix_losses.py @@ -13,7 +13,7 @@ import tensorflow as tf import tensorflow.keras.backend as K import tensorflow_probability as tfp -from tensorflow.keras.losses import Loss +from keras.losses import Loss class MeanScoreClassificationLoss(Loss): diff --git a/keras_fsl/metrics/gram_matrix_metrics.py b/keras_fsl/metrics/gram_matrix_metrics.py index d9346f8..ba23117 100644 --- a/keras_fsl/metrics/gram_matrix_metrics.py +++ b/keras_fsl/metrics/gram_matrix_metrics.py @@ -3,7 +3,7 @@ instance). y_true should be one-hot encoded """ import tensorflow as tf -from tensorflow.keras import backend as K +from keras import backend as K def classification_accuracy(ascending=False): diff --git a/keras_fsl/models/encoders/basic_cnn.py b/keras_fsl/models/encoders/basic_cnn.py index 2f0faac..8dd1f67 100644 --- a/keras_fsl/models/encoders/basic_cnn.py +++ b/keras_fsl/models/encoders/basic_cnn.py @@ -1,5 +1,5 @@ -from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D -from tensorflow.keras.models import Sequential +from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D +from keras.models import Sequential def BasicCNN(input_shape, classes=None): diff --git a/keras_fsl/models/encoders/darknet.py b/keras_fsl/models/encoders/darknet.py index 3924e32..89d9a2b 100644 --- a/keras_fsl/models/encoders/darknet.py +++ b/keras_fsl/models/encoders/darknet.py @@ -1,8 +1,8 @@ from functools import wraps -from tensorflow.keras import Sequential, Input, Model -from tensorflow.keras.layers import Conv2D, LeakyReLU, ZeroPadding2D, Add, MaxPooling2D, BatchNormalization -from tensorflow.keras.regularizers import l2 +from keras import Sequential, Input, Model +from keras.layers import Conv2D, LeakyReLU, ZeroPadding2D, Add, MaxPooling2D, BatchNormalization +from keras.regularizers import l2 @wraps(Conv2D) diff --git a/keras_fsl/models/encoders/koch_net.py b/keras_fsl/models/encoders/koch_net.py index c02a389..2b1bbca 100644 --- a/keras_fsl/models/encoders/koch_net.py +++ b/keras_fsl/models/encoders/koch_net.py @@ -1,7 +1,7 @@ -from tensorflow.keras import Sequential, Input -from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten -from tensorflow.keras.initializers import RandomNormal -from tensorflow.keras.regularizers import l2 +from keras import Sequential, Input +from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten +from keras.initializers import RandomNormal +from keras.regularizers import l2 def conv_2d(*args, **kwargs): diff --git a/keras_fsl/models/encoders/single_conv_2d.py b/keras_fsl/models/encoders/single_conv_2d.py index d55b723..f01182f 100644 --- a/keras_fsl/models/encoders/single_conv_2d.py +++ b/keras_fsl/models/encoders/single_conv_2d.py @@ -1,5 +1,5 @@ -from tensorflow.keras import Sequential -from tensorflow.keras.layers import Conv2D, GlobalAveragePooling2D +from keras import Sequential +from keras.layers import Conv2D, GlobalAveragePooling2D def SingleConv2D(input_shape): diff --git a/keras_fsl/models/encoders/vinyals_net.py b/keras_fsl/models/encoders/vinyals_net.py index ef9fb41..f8c3daa 100644 --- a/keras_fsl/models/encoders/vinyals_net.py +++ b/keras_fsl/models/encoders/vinyals_net.py @@ -1,5 +1,5 @@ -from tensorflow.keras import Sequential -from tensorflow.keras.layers import Conv2D, Input, BatchNormalization, Activation, MaxPooling2D, Flatten +from keras import Sequential +from keras.layers import Conv2D, Input, BatchNormalization, Activation, MaxPooling2D, Flatten def conv_block(*args, **kwargs): diff --git a/keras_fsl/models/head_models/dense_sigmoid.py b/keras_fsl/models/head_models/dense_sigmoid.py index e1126e0..5e622bb 100644 --- a/keras_fsl/models/head_models/dense_sigmoid.py +++ b/keras_fsl/models/head_models/dense_sigmoid.py @@ -1,6 +1,6 @@ import tensorflow as tf -from tensorflow.keras.layers import Dense, Input, Lambda -from tensorflow.keras.models import Model +from keras.layers import Dense, Input, Lambda +from keras.models import Model def DenseSigmoid(input_shape, use_bias=True): diff --git a/keras_fsl/models/head_models/learnt_norms.py b/keras_fsl/models/head_models/learnt_norms.py index ca5c234..e407597 100644 --- a/keras_fsl/models/head_models/learnt_norms.py +++ b/keras_fsl/models/head_models/learnt_norms.py @@ -1,7 +1,7 @@ -import numpy as np import tensorflow as tf -from tensorflow.keras import activations -from tensorflow.keras.layers import ( +import numpy as np +from keras import activations +from keras.layers import ( Concatenate, Conv2D, Dense, @@ -9,9 +9,9 @@ Input, Reshape, ) -from tensorflow.keras.mixed_precision.experimental import global_policy -from tensorflow.keras.models import Model -from tensorflow.python.keras.layers import Activation +from keras.mixed_precision import global_policy +from keras.models import Model +from keras.layers import Activation def LearntNorms(input_shape, use_bias=True, activation="sigmoid"): diff --git a/keras_fsl/models/head_models/mixed_norms.py b/keras_fsl/models/head_models/mixed_norms.py index 7919040..7f4f7aa 100644 --- a/keras_fsl/models/head_models/mixed_norms.py +++ b/keras_fsl/models/head_models/mixed_norms.py @@ -1,6 +1,6 @@ import tensorflow as tf -from tensorflow.keras import activations -from tensorflow.keras.layers import ( +from keras import activations +from keras.layers import ( Concatenate, Conv2D, Dense, @@ -10,7 +10,7 @@ Lambda, Reshape, ) -from tensorflow.keras.models import Model +from keras.models import Model def MixedNorms(input_shape, norms=None, use_bias=True, activation="sigmoid"): diff --git a/keras_fsl/models/head_models/tests/__init__.py b/keras_fsl/models/head_models/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/keras_fsl/models/head_models/tests/learnt_norms_test.py b/keras_fsl/models/head_models/tests/learnt_norms_test.py index 5224b1c..23173b5 100644 --- a/keras_fsl/models/head_models/tests/learnt_norms_test.py +++ b/keras_fsl/models/head_models/tests/learnt_norms_test.py @@ -1,7 +1,8 @@ import numpy as np import tensorflow as tf from absl.testing import parameterized -from tensorflow.keras.optimizers import RMSprop +from keras import mixed_precision +from keras.optimizers import RMSprop from tensorflow.python.keras.keras_parameterized import TestCase, run_all_keras_modes, run_with_all_model_types from keras_fsl.models.head_models import LearntNorms @@ -34,8 +35,8 @@ def test_should_fit(self, input_shape): ("float64", "float64", "float64"), ) def test_last_activation_fp32_in_mixed_precision(self, mixed_precision_policy, expected_last_layer_dtype_policy): - policy = tf.keras.mixed_precision.experimental.Policy(mixed_precision_policy) - tf.keras.mixed_precision.experimental.set_policy(policy) + policy = mixed_precision.Policy(mixed_precision_policy) + mixed_precision.set_global_policy(policy) learnt_norms = LearntNorms(input_shape=(10,)) # Check dtype policy of internal non-input layers @@ -43,7 +44,7 @@ def test_last_activation_fp32_in_mixed_precision(self, mixed_precision_policy, e assert layer._dtype_policy.name == mixed_precision_policy # Check dtype policy of last layer always at least FP32 - assert learnt_norms.layers[-1]._dtype_policy.name == expected_last_layer_dtype_policy + assert learnt_norms.layers[-1].dtype_policy.name == expected_last_layer_dtype_policy if __name__ == "__main__": diff --git a/keras_fsl/models/siamese_nets.py b/keras_fsl/models/siamese_nets.py index 45a24b3..4d4bc92 100644 --- a/keras_fsl/models/siamese_nets.py +++ b/keras_fsl/models/siamese_nets.py @@ -1,5 +1,5 @@ -from tensorflow.keras import Model -from tensorflow.keras.layers import Input +from keras import Model +from keras.layers import Input from keras_fsl.models import encoders, head_models diff --git a/keras_fsl/sequences/abstract_sequence.py b/keras_fsl/sequences/abstract_sequence.py index 13fb810..692a413 100644 --- a/keras_fsl/sequences/abstract_sequence.py +++ b/keras_fsl/sequences/abstract_sequence.py @@ -3,8 +3,8 @@ import imgaug.augmenters as iaa import numpy as np from abc import ABCMeta -from tensorflow.keras.preprocessing.image import img_to_array, load_img -from tensorflow.keras.utils import Sequence +from keras.preprocessing.image import img_to_array, load_img +from keras.utils import Sequence class AbstractSequence(Sequence, metaclass=ABCMeta): diff --git a/keras_fsl/sequences/prediction/pairs/product_sequence.py b/keras_fsl/sequences/prediction/pairs/product_sequence.py index b3029c5..614bd3d 100644 --- a/keras_fsl/sequences/prediction/pairs/product_sequence.py +++ b/keras_fsl/sequences/prediction/pairs/product_sequence.py @@ -1,7 +1,7 @@ import math import pandas as pd -from tensorflow.keras.utils import Sequence +from keras.utils import Sequence class ProductSequence(Sequence): diff --git a/keras_fsl/sequences/training/pairs/random_product_sequence.py b/keras_fsl/sequences/training/pairs/random_product_sequence.py index 61df4ec..e4a4cb7 100644 --- a/keras_fsl/sequences/training/pairs/random_product_sequence.py +++ b/keras_fsl/sequences/training/pairs/random_product_sequence.py @@ -1,7 +1,7 @@ import math import pandas as pd -from tensorflow.keras.utils import Sequence +from keras.utils import Sequence class RandomProductSequence(Sequence): diff --git a/notebooks/batch_gram_matrix_training.py b/notebooks/batch_gram_matrix_training.py index c04de9e..e3fd90f 100644 --- a/notebooks/batch_gram_matrix_training.py +++ b/notebooks/batch_gram_matrix_training.py @@ -4,14 +4,14 @@ import click import pandas as pd import tensorflow as tf -from tensorflow.keras import applications as keras_applications -from tensorflow.keras.callbacks import ( +from keras import applications as keras_applications +from keras.callbacks import ( ModelCheckpoint, ReduceLROnPlateau, TensorBoard, ) -from tensorflow.keras.models import Sequential -from tensorflow.keras.optimizers import Adam +from keras.models import Sequential +from keras.optimizers import Adam from keras_fsl.dataframe.operators import ToKShotDataset from keras_fsl.layers import Classification, GramMatrix @@ -22,8 +22,8 @@ #%% Toggle some config if required # tf.config.experimental_run_functions_eagerly(True) # tf.config.optimizer.set_jit(True) -# policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16") -# tf.keras.mixed_precision.experimental.set_policy(policy) +# policy = tf.keras.mixed_precision.Policy("mixed_float16") +# tf.keras.mixed_precision.set_policy(policy) #%% CLI args diff --git a/notebooks/benchmark_caching_performance.ipynb b/notebooks/benchmark_caching_performance.ipynb index 362d033..ea84402 100644 --- a/notebooks/benchmark_caching_performance.ipynb +++ b/notebooks/benchmark_caching_performance.ipynb @@ -1897,8 +1897,8 @@ "import tensorflow_datasets as tfds\n", "from functools import partial\n", "from gpumonitor.callbacks.tf import TFGpuMonitorCallback\n", - "from tensorflow.keras.layers import Conv2D, Dropout, Flatten, GlobalMaxPooling2D, Input, MaxPooling2D\n", - "from tensorflow.keras.models import Sequential\n", + "from keras.layers import Conv2D, Dropout, Flatten, GlobalMaxPooling2D, Input, MaxPooling2D\n", + "from keras.models import Sequential\n", "\n", "from keras_fsl.utils.datasets import assign, cache, cache_with_tf_record, read_decode_and_crop_jpeg, transform" ], diff --git a/notebooks/build_siamese_model_for_serving.py b/notebooks/build_siamese_model_for_serving.py index 5995edb..603cb8e 100644 --- a/notebooks/build_siamese_model_for_serving.py +++ b/notebooks/build_siamese_model_for_serving.py @@ -1,6 +1,6 @@ # flake8: noqa: E265 import tensorflow as tf -from tensorflow.keras.models import load_model +from keras.models import load_model #%% Load siamese nets classifier = load_model("siamese_nets_classifier/1") diff --git a/notebooks/centroids_similarity_training.py b/notebooks/centroids_similarity_training.py index feafa60..8113aab 100644 --- a/notebooks/centroids_similarity_training.py +++ b/notebooks/centroids_similarity_training.py @@ -3,15 +3,15 @@ import click import pandas as pd import tensorflow as tf -from tensorflow.keras import applications as keras_applications -from tensorflow.keras.callbacks import ( +from keras import applications as keras_applications +from keras.callbacks import ( ModelCheckpoint, ReduceLROnPlateau, TensorBoard, ) -from tensorflow.keras.layers import Input -from tensorflow.keras.models import Model -from tensorflow.keras.optimizers import Adam +from keras.layers import Input +from keras.models import Model +from keras.optimizers import Adam from keras_fsl.dataframe.operators import ToKShotDataset from keras_fsl.layers import CentroidsMatrix @@ -22,8 +22,8 @@ #%% Toggle some config if required # tf.config.experimental_run_functions_eagerly(True) # tf.config.optimizer.set_jit(True) -# policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16") -# tf.keras.mixed_precision.experimental.set_policy(policy) +# policy = tf.keras.mixed_precision.Policy("mixed_float16") +# tf.keras.mixed_precision.set_policy(policy) #%% CLI args diff --git a/notebooks/evaluate.py b/notebooks/evaluate.py index 826a4fd..ec18c3e 100644 --- a/notebooks/evaluate.py +++ b/notebooks/evaluate.py @@ -3,8 +3,8 @@ import numpy as np import pandas as pd import tensorflow as tf -from tensorflow.keras.models import load_model -from tensorflow.keras import metrics +from keras.models import load_model +from keras import metrics #%% Init k_shot = 4 diff --git a/notebooks/omniglot/basic_siamese_nets.py b/notebooks/omniglot/basic_siamese_nets.py index c890fe6..506b764 100644 --- a/notebooks/omniglot/basic_siamese_nets.py +++ b/notebooks/omniglot/basic_siamese_nets.py @@ -4,9 +4,9 @@ import imgaug.augmenters as iaa import pandas as pd -from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau, EarlyStopping -from tensorflow.keras.optimizer_v2.adam import Adam -from tensorflow.keras.saving import load_model +from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau, EarlyStopping +from keras.optimizer_v2.adam import Adam +from keras.saving import load_model from keras_fsl.datasets import omniglot from keras_fsl.models import SiameseNets diff --git a/notebooks/siamese_nets_training.py b/notebooks/siamese_nets_training.py index 81fc4cb..cde5216 100644 --- a/notebooks/siamese_nets_training.py +++ b/notebooks/siamese_nets_training.py @@ -8,10 +8,10 @@ import pandas as pd import tensorflow as tf import yaml -from tensorflow.keras.models import load_model -from tensorflow.keras import applications as keras_applications -from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, TensorBoard -from tensorflow.keras.optimizers import Adam +from keras.models import load_model +from keras import applications as keras_applications +from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, TensorBoard +from keras.optimizers import Adam from keras_fsl.models import SiameseNets from keras_fsl.sequences import training diff --git a/notebooks/supervised_gram_matrix.py b/notebooks/supervised_gram_matrix.py index 9c83c45..ad618eb 100644 --- a/notebooks/supervised_gram_matrix.py +++ b/notebooks/supervised_gram_matrix.py @@ -7,10 +7,10 @@ import pandas as pd import tensorflow as tf from tensorboard.plugins import projector -from tensorflow.keras.datasets import cifar10 -from tensorflow.keras.models import Sequential -from tensorflow.keras.layers import Lambda -from tensorflow.keras.utils import to_categorical +from keras.datasets import cifar10 +from keras.models import Sequential +from keras.layers import Lambda +from keras.utils import to_categorical from keras_fsl.models.encoders import BasicCNN from keras_fsl.losses import BinaryCrossentropy, class_consistency_loss diff --git a/notebooks/triplet_loss_cifar10.py b/notebooks/triplet_loss_cifar10.py index 2441b1f..7a037df 100644 --- a/notebooks/triplet_loss_cifar10.py +++ b/notebooks/triplet_loss_cifar10.py @@ -12,9 +12,9 @@ import pandas as pd import tensorflow as tf import tensorflow_datasets as tfds -from tensorflow.keras.callbacks import TensorBoard -from tensorflow.keras.layers import Conv2D, Dense, Dropout, GlobalMaxPooling2D, Input, Flatten, MaxPooling2D, Lambda -from tensorflow.keras.models import Sequential +from keras.callbacks import TensorBoard +from keras.layers import Conv2D, Dense, Dropout, GlobalMaxPooling2D, Input, Flatten, MaxPooling2D, Lambda +from keras.models import Sequential from keras_fsl.layers import GramMatrix from keras_fsl.losses.gram_matrix_losses import BinaryCrossentropy, class_consistency_loss, TripletLoss diff --git a/notebooks/triplet_loss_mnist.py b/notebooks/triplet_loss_mnist.py index 6c60521..fa41d71 100644 --- a/notebooks/triplet_loss_mnist.py +++ b/notebooks/triplet_loss_mnist.py @@ -8,9 +8,9 @@ import tensorflow as tf import tensorflow_addons as tfa import tensorflow_datasets as tfds -from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, Lambda, MaxPooling2D -from tensorflow.keras.models import Sequential -from tensorflow.keras.callbacks import TensorBoard +from keras.layers import Conv2D, Dense, Dropout, Flatten, Lambda, MaxPooling2D +from keras.models import Sequential +from keras.callbacks import TensorBoard from keras_fsl.losses.gram_matrix_losses import triplet_loss from keras_fsl.layers import GramMatrix diff --git a/notebooks/unsupervised_cifar10.py b/notebooks/unsupervised_cifar10.py index a7b7ec6..339c74d 100644 --- a/notebooks/unsupervised_cifar10.py +++ b/notebooks/unsupervised_cifar10.py @@ -5,9 +5,9 @@ import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_addons as tfa -from tensorflow.keras.callbacks import EarlyStopping, TensorBoard -from tensorflow.keras.layers import Conv2D, Dense, Dropout, GlobalMaxPooling2D, Input, Flatten, MaxPooling2D, Lambda -from tensorflow.keras.models import Sequential +from keras.callbacks import EarlyStopping, TensorBoard +from keras.layers import Conv2D, Dense, Dropout, GlobalMaxPooling2D, Input, Flatten, MaxPooling2D, Lambda +from keras.models import Sequential from keras_fsl.layers import GramMatrix from keras_fsl.losses.gram_matrix_losses import ClippedBinaryCrossentropy, ClassConsistencyLoss diff --git a/poetry.lock b/poetry.lock index b6fc323..1b3702c 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,13 +1,10 @@ [[package]] name = "absl-py" -version = "0.9.0" +version = "1.2.0" description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." category = "main" optional = false -python-versions = "*" - -[package.dependencies] -six = "*" +python-versions = ">=3.6" [[package]] name = "appdirs" @@ -207,6 +204,14 @@ python-versions = ">=2.6, !=3.0.*" [package.extras] graph = ["objgraph (>=1.7.2)"] +[[package]] +name = "dm-tree" +version = "0.1.7" +description = "Tree is a library for working with nested data structures." +category = "main" +optional = false +python-versions = "*" + [[package]] name = "entrypoints" version = "0.3" @@ -229,6 +234,14 @@ mccabe = ">=0.6.0,<0.7.0" pycodestyle = ">=2.6.0a1,<2.7.0" pyflakes = ">=2.2.0,<2.3.0" +[[package]] +name = "flatbuffers" +version = "1.12" +description = "The FlatBuffers serialization format for Python" +category = "main" +optional = false +python-versions = "*" + [[package]] name = "future" version = "0.18.2" @@ -600,6 +613,14 @@ python-versions = "!=3.0,!=3.1,!=3.2,!=3.3,!=3.4,>=2.7" pywin32 = {version = ">=1.0", markers = "sys_platform == \"win32\""} traitlets = "*" +[[package]] +name = "keras" +version = "2.9.0" +description = "Deep learning for humans." +category = "main" +optional = false +python-versions = "*" + [[package]] name = "keras-preprocessing" version = "1.1.2" @@ -625,6 +646,14 @@ category = "dev" optional = false python-versions = ">=3.6" +[[package]] +name = "libclang" +version = "14.0.6" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +category = "main" +optional = false +python-versions = "*" + [[package]] name = "markdown" version = "3.2.2" @@ -743,17 +772,17 @@ python-versions = ">=3.5" decorator = ">=4.3.0" [package.extras] -scipy = ["scipy"] -pyyaml = ["pyyaml"] -pytest = ["pytest"] -pygraphviz = ["pygraphviz"] -pydot = ["pydot"] -pandas = ["pandas"] -numpy = ["numpy"] -matplotlib = ["matplotlib"] -lxml = ["lxml"] +all = ["numpy", "scipy", "pandas", "matplotlib", "pygraphviz", "pydot", "pyyaml", "gdal", "lxml", "pytest"] gdal = ["gdal"] -all = ["pytest", "lxml", "gdal", "pyyaml", "pydot", "pygraphviz", "matplotlib", "pandas", "scipy", "numpy"] +lxml = ["lxml"] +matplotlib = ["matplotlib"] +numpy = ["numpy"] +pandas = ["pandas"] +pydot = ["pydot"] +pygraphviz = ["pygraphviz"] +pytest = ["pytest"] +pyyaml = ["pyyaml"] +scipy = ["scipy"] [[package]] name = "notebook" @@ -783,11 +812,11 @@ test = ["nose", "coverage", "requests", "nose-warnings-filters", "nbval", "nose- [[package]] name = "numpy" -version = "1.18.5" +version = "1.21.6" description = "NumPy is the fundamental package for array computing with Python." category = "main" optional = false -python-versions = ">=3.5" +python-versions = ">=3.7,<3.11" [[package]] name = "nvidia-ml-py3" @@ -840,7 +869,7 @@ tests = ["pytest", "pytest-cov", "pytest-pep8"] name = "packaging" version = "20.4" description = "Core utilities for Python packages" -category = "dev" +category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" @@ -1050,7 +1079,7 @@ python-versions = ">=3.5" name = "pyparsing" version = "2.4.7" description = "Python parsing module" -category = "dev" +category = "main" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" @@ -1326,24 +1355,32 @@ python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" [[package]] name = "tensorboard" -version = "2.2.2" +version = "2.9.1" description = "TensorBoard lets you watch Tensors Flow" category = "main" optional = false -python-versions = ">= 2.7, != 3.0.*, != 3.1.*" +python-versions = ">=3.6" [package.dependencies] absl-py = ">=0.4" -google-auth = ">=1.6.3,<2" +google-auth = ">=1.6.3,<3" google-auth-oauthlib = ">=0.4.1,<0.5" grpcio = ">=1.24.3" markdown = ">=2.6.8" numpy = ">=1.12.0" -protobuf = ">=3.6.0" +protobuf = ">=3.9.2,<3.20" requests = ">=2.21.0,<3" -six = ">=1.10.0" +tensorboard-data-server = ">=0.6.0,<0.7.0" tensorboard-plugin-wit = ">=1.6.0" -werkzeug = ">=0.11.15" +werkzeug = ">=1.0.1" + +[[package]] +name = "tensorboard-data-server" +version = "0.6.1" +description = "Fast data loading for TensorBoard" +category = "main" +optional = false +python-versions = ">=3.6" [[package]] name = "tensorboard-plugin-wit" @@ -1355,28 +1392,34 @@ python-versions = "*" [[package]] name = "tensorflow" -version = "2.2.3" +version = "2.9.1" description = "TensorFlow is an open source machine learning framework for everyone." category = "main" optional = false -python-versions = "*" +python-versions = ">=3.7" [package.dependencies] -absl-py = ">=0.7.0" -astunparse = "1.6.3" -gast = "0.3.3" -google-pasta = ">=0.1.8" -grpcio = ">=1.8.6" -h5py = ">=2.10.0,<2.11.0" -keras-preprocessing = ">=1.1.0" -numpy = ">=1.16.0,<1.19.0" +absl-py = ">=1.0.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12,<2" +gast = ">=0.2.1,<=0.4.0" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.9.0rc0,<2.10.0" +keras-preprocessing = ">=1.1.1" +libclang = ">=13.0.0" +numpy = ">=1.20" opt-einsum = ">=2.3.2" -protobuf = ">=3.8.0" +packaging = "*" +protobuf = ">=3.9.2,<3.20" six = ">=1.12.0" -tensorboard = ">=2.2.0,<2.3.0" -tensorflow-estimator = ">=2.2.0,<2.3.0" +tensorboard = ">=2.9,<2.10" +tensorflow-estimator = ">=2.9.0rc0,<2.10.0" +tensorflow-io-gcs-filesystem = ">=0.23.1" termcolor = ">=1.1.0" -wrapt = ">=1.11.1" +typing-extensions = ">=3.6.6" +wrapt = ">=1.11.0" [[package]] name = "tensorflow-addons" @@ -1439,11 +1482,26 @@ wikipedia = ["mwparserfromhell", "apache-beam"] [[package]] name = "tensorflow-estimator" -version = "2.2.0" +version = "2.9.0" description = "TensorFlow Estimator." category = "main" optional = false -python-versions = "*" +python-versions = ">=3.7" + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.26.0" +description = "TensorFlow IO" +category = "main" +optional = false +python-versions = ">=3.7, <3.11" + +[package.extras] +tensorflow = ["tensorflow (>=2.9.0,<2.10.0)"] +tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.9.0,<2.10.0)"] +tensorflow-cpu = ["tensorflow-cpu (>=2.9.0,<2.10.0)"] +tensorflow-gpu = ["tensorflow-gpu (>=2.9.0,<2.10.0)"] +tensorflow-rocm = ["tensorflow-rocm (>=2.9.0,<2.10.0)"] [[package]] name = "tensorflow-metadata" @@ -1459,21 +1517,24 @@ protobuf = ">=3.7,<4" [[package]] name = "tensorflow-probability" -version = "0.9.0" +version = "0.17.0" description = "Probabilistic modeling and statistical inference in TensorFlow" category = "main" optional = false python-versions = "*" [package.dependencies] -cloudpickle = ">=1.2.2" +absl-py = "*" +cloudpickle = ">=1.3" decorator = "*" -gast = ">=0.2" +dm-tree = "*" +gast = ">=0.3.2" numpy = ">=1.13.3" six = ">=1.10.0" [package.extras] jax = ["jax", "jaxlib"] +tfds = ["tensorflow-datasets (>=2.2.0)"] [[package]] name = "termcolor" @@ -1584,6 +1645,14 @@ python-versions = ">=3.5.3" doc = ["sphinx-rtd-theme", "sphinx-autodoc-typehints (>=1.2.0)"] test = ["pytest", "typing-extensions"] +[[package]] +name = "typing-extensions" +version = "4.3.0" +description = "Backported and Experimental Type Hints for Python 3.7+" +category = "main" +optional = false +python-versions = ">=3.7" + [[package]] name = "urllib3" version = "1.25.9" @@ -1622,8 +1691,8 @@ optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" [package.extras] +dev = ["pytest", "pytest-timeout", "coverage", "tox", "sphinx", "pallets-sphinx-themes", "sphinx-issues"] watchdog = ["watchdog"] -dev = ["sphinx-issues", "pallets-sphinx-themes", "sphinx", "tox", "coverage", "pytest-timeout", "pytest"] [[package]] name = "widgetsnbextension" @@ -1658,8 +1727,8 @@ testing = ["jaraco.itertools", "func-timeout"] [metadata] lock-version = "1.1" -python-versions = "^3.6.5" -content-hash = "5bc9595760a82f9d0ec6542798b816a492a97506cb8d56a0951c2b1ad14ce218" +python-versions = ">=3.7,<3.11" +content-hash = "e1b2952111bc2aab281e7b60f01c3e91aa840bc8405a81001742fa6188798b6c" [metadata.files] absl-py = [] @@ -1676,7 +1745,10 @@ atomicwrites = [ {file = "atomicwrites-1.4.0-py2.py3-none-any.whl", hash = "sha256:6d1784dea7c0c8d4a5172b6c620f40b6e4cbfdf96d783691f2e1302a7b88e197"}, {file = "atomicwrites-1.4.0.tar.gz", hash = "sha256:ae70396ad1a434f9c7046fd2dd196fc04b12f9e91ffb859164193be8b6168a7a"}, ] -attrs = [] +attrs = [ + {file = "attrs-19.3.0-py2.py3-none-any.whl", hash = "sha256:08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c"}, + {file = "attrs-19.3.0.tar.gz", hash = "sha256:f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72"}, +] backcall = [ {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, @@ -1689,7 +1761,10 @@ bleach = [] blessings = [] cachetools = [] certifi = [] -chardet = [] +chardet = [ + {file = "chardet-3.0.4-py2.py3-none-any.whl", hash = "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691"}, + {file = "chardet-3.0.4.tar.gz", hash = "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae"}, +] click = [ {file = "click-7.1.2-py2.py3-none-any.whl", hash = "sha256:dacca89f4bfadd5de3d7489b7c8a566eee0d3676333fbb50030263894c38c0dc"}, {file = "click-7.1.2.tar.gz", hash = "sha256:d2b5255c7c6349bc1bd1e59e08cd12acbbd63ce649f2588755783aa94dfb6b1a"}, @@ -1700,12 +1775,29 @@ colorama = [ {file = "colorama-0.4.3.tar.gz", hash = "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1"}, ] coverage = [] -cycler = [] -decorator = [] -defusedxml = [] +cycler = [ + {file = "cycler-0.10.0-py2.py3-none-any.whl", hash = "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d"}, + {file = "cycler-0.10.0.tar.gz", hash = "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"}, +] +decorator = [ + {file = "decorator-4.4.2-py2.py3-none-any.whl", hash = "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760"}, + {file = "decorator-4.4.2.tar.gz", hash = "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7"}, +] +defusedxml = [ + {file = "defusedxml-0.6.0-py2.py3-none-any.whl", hash = "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93"}, + {file = "defusedxml-0.6.0.tar.gz", hash = "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5"}, +] dill = [] -entrypoints = [] +dm-tree = [] +entrypoints = [ + {file = "entrypoints-0.3-py2.py3-none-any.whl", hash = "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19"}, + {file = "entrypoints-0.3.tar.gz", hash = "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"}, +] flake8 = [] +flatbuffers = [ + {file = "flatbuffers-1.12-py2.py3-none-any.whl", hash = "sha256:9e9ef47fa92625c4721036e7c4124182668dc6021d9e7c73704edd395648deb9"}, + {file = "flatbuffers-1.12.tar.gz", hash = "sha256:63bb9a722d5e373701913e226135b28a6f6ac200d5cc7b4d919fa38d73b44610"}, +] future = [ {file = "future-0.18.2.tar.gz", hash = "sha256:b1bead90b70cf6ec3f0710ae53a525360fa360d306a86583adc6bf83a4db537d"}, ] @@ -1714,7 +1806,10 @@ gast = [ {file = "gast-0.3.3.tar.gz", hash = "sha256:b881ef288a49aa81440d2c5eb8aeefd4c2bb8993d5f50edae7413a85bfdb3b57"}, ] google-auth = [] -google-auth-oauthlib = [] +google-auth-oauthlib = [ + {file = "google-auth-oauthlib-0.4.1.tar.gz", hash = "sha256:88d2cd115e3391eb85e1243ac6902e76e77c5fe438b7276b297fbe68015458dd"}, + {file = "google_auth_oauthlib-0.4.1-py2.py3-none-any.whl", hash = "sha256:a92a0f6f41a0fb6138454fbc02674e64f89d82a244ea32f98471733c8ef0e0e1"}, +] google-pasta = [ {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, @@ -1755,7 +1850,10 @@ h5py = [ {file = "h5py-2.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:769e141512b54dee14ec76ed354fcacfc7d97fea5a7646b709f7400cf1838630"}, {file = "h5py-2.10.0.tar.gz", hash = "sha256:84412798925dc870ffd7107f045d7659e60f5d46d1c70c700375248bf6bf512d"}, ] -idna = [] +idna = [ + {file = "idna-2.9-py2.py3-none-any.whl", hash = "sha256:a068a21ceac8a4d63dbfd964670474107f541babbd2250d61922f029858365fa"}, + {file = "idna-2.9.tar.gz", hash = "sha256:7588d1c14ae4c77d74036e8c22ff447b26d0fde8f007354fd48a7814db15b7cb"}, +] imageio = [] imgaug = [] importlib-metadata = [] @@ -1767,24 +1865,27 @@ ipython-genutils = [ ] ipywidgets = [] jedi = [] -jinja2 = [] +jinja2 = [ + {file = "Jinja2-2.11.2-py2.py3-none-any.whl", hash = "sha256:f0a4641d3cf955324a89c04f3d94663aa4d638abe8f733ecd3582848e1c37035"}, + {file = "Jinja2-2.11.2.tar.gz", hash = "sha256:89aab215427ef59c34ad58735269eb58b1a5808103067f7bb9d5836c651b3bb0"}, +] jsonschema = [ {file = "jsonschema-3.2.0-py2.py3-none-any.whl", hash = "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163"}, {file = "jsonschema-3.2.0.tar.gz", hash = "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a"}, ] -jupyter = [ - {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, - {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, - {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, -] +jupyter = [] jupyter-client = [] jupyter-console = [] jupyter-core = [] +keras = [ + {file = "keras-2.9.0-py2.py3-none-any.whl", hash = "sha256:55911256f89cfc9343c9fbe4b61ec45a2d33d89729cbe1ab9dcacf8b07b8b6ab"}, +] keras-preprocessing = [ {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, ] kiwisolver = [] +libclang = [] markdown = [] markupsafe = [ {file = "MarkupSafe-1.1.1-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161"}, @@ -1841,7 +1942,10 @@ markupsafe = [ {file = "MarkupSafe-1.1.1.tar.gz", hash = "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b"}, ] matplotlib = [] -mccabe = [] +mccabe = [ + {file = "mccabe-0.6.1-py2.py3-none-any.whl", hash = "sha256:ab8a6258860da4b6677da4bd2fe5dc2c659cff31b3ee4f7f5d64e79735b80d42"}, + {file = "mccabe-0.6.1.tar.gz", hash = "sha256:dd8d182285a0fe56bace7f45b5e7d1a6ebcbf524e8f3bd87eb0f125271b8831f"}, +] mistune = [ {file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"}, {file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"}, @@ -1849,33 +1953,17 @@ mistune = [ more-itertools = [] nbconvert = [] nbformat = [] -networkx = [] -notebook = [] -numpy = [ - {file = "numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:e91d31b34fc7c2c8f756b4e902f901f856ae53a93399368d9a0dc7be17ed2ca0"}, - {file = "numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:7d42ab8cedd175b5ebcb39b5208b25ba104842489ed59fbb29356f671ac93583"}, - {file = "numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:a78e438db8ec26d5d9d0e584b27ef25c7afa5a182d1bf4d05e313d2d6d515271"}, - {file = "numpy-1.18.5-cp35-cp35m-win32.whl", hash = "sha256:a87f59508c2b7ceb8631c20630118cc546f1f815e034193dc72390db038a5cb3"}, - {file = "numpy-1.18.5-cp35-cp35m-win_amd64.whl", hash = "sha256:965df25449305092b23d5145b9bdaeb0149b6e41a77a7d728b1644b3c99277c1"}, - {file = "numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:ac792b385d81151bae2a5a8adb2b88261ceb4976dbfaaad9ce3a200e036753dc"}, - {file = "numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:ef627986941b5edd1ed74ba89ca43196ed197f1a206a3f18cc9faf2fb84fd675"}, - {file = "numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:f718a7949d1c4f622ff548c572e0c03440b49b9531ff00e4ed5738b459f011e8"}, - {file = "numpy-1.18.5-cp36-cp36m-win32.whl", hash = "sha256:4064f53d4cce69e9ac613256dc2162e56f20a4e2d2086b1956dd2fcf77b7fac5"}, - {file = "numpy-1.18.5-cp36-cp36m-win_amd64.whl", hash = "sha256:b03b2c0badeb606d1232e5f78852c102c0a7989d3a534b3129e7856a52f3d161"}, - {file = "numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a7acefddf994af1aeba05bbbafe4ba983a187079f125146dc5859e6d817df824"}, - {file = "numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:cd49930af1d1e49a812d987c2620ee63965b619257bd76eaaa95870ca08837cf"}, - {file = "numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:b39321f1a74d1f9183bf1638a745b4fd6fe80efbb1f6b32b932a588b4bc7695f"}, - {file = "numpy-1.18.5-cp37-cp37m-win32.whl", hash = "sha256:cae14a01a159b1ed91a324722d746523ec757357260c6804d11d6147a9e53e3f"}, - {file = "numpy-1.18.5-cp37-cp37m-win_amd64.whl", hash = "sha256:0172304e7d8d40e9e49553901903dc5f5a49a703363ed756796f5808a06fc233"}, - {file = "numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e15b382603c58f24265c9c931c9a45eebf44fe2e6b4eaedbb0d025ab3255228b"}, - {file = "numpy-1.18.5-cp38-cp38-manylinux1_i686.whl", hash = "sha256:3676abe3d621fc467c4c1469ee11e395c82b2d6b5463a9454e37fe9da07cd0d7"}, - {file = "numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:4674f7d27a6c1c52a4d1aa5f0881f1eff840d2206989bae6acb1c7668c02ebfb"}, - {file = "numpy-1.18.5-cp38-cp38-win32.whl", hash = "sha256:9c9d6531bc1886454f44aa8f809268bc481295cf9740827254f53c30104f074a"}, - {file = "numpy-1.18.5-cp38-cp38-win_amd64.whl", hash = "sha256:3dd6823d3e04b5f223e3e265b4a1eae15f104f4366edd409e5a5e413a98f911f"}, - {file = "numpy-1.18.5.zip", hash = "sha256:34e96e9dae65c4839bd80012023aadd6ee2ccb73ce7fdf3074c62f301e63120b"}, +networkx = [ + {file = "networkx-2.4-py3-none-any.whl", hash = "sha256:cdfbf698749a5014bf2ed9db4a07a5295df1d3a53bf80bf3cbd61edf9df05fa1"}, + {file = "networkx-2.4.tar.gz", hash = "sha256:f8f4ff0b6f96e4f9b16af6b84622597b5334bf9cae8cf9b2e42e7985d5c95c64"}, ] +notebook = [] +numpy = [] nvidia-ml-py3 = [] -oauthlib = [] +oauthlib = [ + {file = "oauthlib-3.1.0-py2.py3-none-any.whl", hash = "sha256:df884cd6cbe20e32633f1db1072e9356f53638e4361bef4e8b03c9127c9328ea"}, + {file = "oauthlib-3.1.0.tar.gz", hash = "sha256:bee41cc35fcca6e988463cacc3bcb8a96224f470ca547e697b604cc697b2f889"}, +] opencv-python = [] opt-einsum = [] packaging = [] @@ -1897,9 +1985,7 @@ pluggy = [ {file = "pluggy-0.13.1.tar.gz", hash = "sha256:15b2acde666561e1298d71b523007ed7364de07029219b604cf808bfa1c765b0"}, ] prometheus-client = [] -promise = [ - {file = "promise-2.3.tar.gz", hash = "sha256:dfd18337c523ba4b6a58801c164c1904a9d4d1b1747c7d5dbf45b693a49d93d0"}, -] +promise = [] prompt-toolkit = [] protobuf = [ {file = "protobuf-3.19.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f51d5a9f137f7a2cec2d326a74b6e3fc79d635d69ffe1b036d39fc7d75430d37"}, @@ -1964,79 +2050,249 @@ pyasn1-modules = [ ] pycodestyle = [] pyflakes = [] -pygments = [] -pyparsing = [] +pygments = [ + {file = "Pygments-2.6.1-py3-none-any.whl", hash = "sha256:ff7a40b4860b727ab48fad6360eb351cc1b33cbf9b15a0f689ca5353e9463324"}, + {file = "Pygments-2.6.1.tar.gz", hash = "sha256:647344a061c249a3b74e230c739f434d7ea4d8b1d5f3721bc0f3558049b38f44"}, +] +pyparsing = [ + {file = "pyparsing-2.4.7-py2.py3-none-any.whl", hash = "sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"}, + {file = "pyparsing-2.4.7.tar.gz", hash = "sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1"}, +] pyrsistent = [] pytest = [ {file = "pytest-5.4.3-py3-none-any.whl", hash = "sha256:5c0db86b698e8f170ba4582a492248919255fcd4c79b1ee64ace34301fb589a1"}, {file = "pytest-5.4.3.tar.gz", hash = "sha256:7979331bfcba207414f5e1263b5a0f8f521d0f457318836a7355531ed1a4c7d8"}, ] pytest-cov = [] -python-dateutil = [] +python-dateutil = [ + {file = "python-dateutil-2.8.1.tar.gz", hash = "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c"}, + {file = "python_dateutil-2.8.1-py2.py3-none-any.whl", hash = "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a"}, +] pytz = [] -pywavelets = [] +pywavelets = [ + {file = "PyWavelets-1.1.1-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:35959c041ec014648575085a97b498eafbbaa824f86f6e4a59bfdef8a3fe6308"}, + {file = "PyWavelets-1.1.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:55e39ec848ceec13c9fa1598253ae9dd5c31d09dfd48059462860d2b908fb224"}, + {file = "PyWavelets-1.1.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:c06d2e340c7bf8b9ec71da2284beab8519a3908eab031f4ea126e8ccfc3fd567"}, + {file = "PyWavelets-1.1.1-cp35-cp35m-win32.whl", hash = "sha256:be105382961745f88d8196bba5a69ee2c4455d87ad2a2e5d1eed6bd7fda4d3fd"}, + {file = "PyWavelets-1.1.1-cp35-cp35m-win_amd64.whl", hash = "sha256:076ca8907001fdfe4205484f719d12b4a0262dfe6652fa1cfc3c5c362d14dc84"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:7947e51ca05489b85928af52a34fe67022ab5b81d4ae32a4109a99e883a0635e"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:9e2528823ccf5a0a1d23262dfefe5034dce89cd84e4e124dc553dfcdf63ebb92"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:80b924edbc012ded8aa8b91cb2fd6207fb1a9a3a377beb4049b8a07445cec6f0"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:c2a799e79cee81a862216c47e5623c97b95f1abee8dd1f9eed736df23fb653fb"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-win32.whl", hash = "sha256:d510aef84d9852653d079c84f2f81a82d5d09815e625f35c95714e7364570ad4"}, + {file = "PyWavelets-1.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:889d4c5c5205a9c90118c1980df526857929841df33e4cd1ff1eff77c6817a65"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:68b5c33741d26c827074b3d8f0251de1c3019bb9567b8d303eb093c822ce28f1"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:18a51b3f9416a2ae6e9a35c4af32cf520dd7895f2b69714f4aa2f4342fca47f9"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:cfe79844526dd92e3ecc9490b5031fca5f8ab607e1e858feba232b1b788ff0ea"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:2f7429eeb5bf9c7068002d0d7f094ed654c77a70ce5e6198737fd68ab85f8311"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-win32.whl", hash = "sha256:720dbcdd3d91c6dfead79c80bf8b00a1d8aa4e5d551dc528c6d5151e4efc3403"}, + {file = "PyWavelets-1.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:bc5e87b72371da87c9bebc68e54882aada9c3114e640de180f62d5da95749cd3"}, + {file = "PyWavelets-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:98b2669c5af842a70cfab33a7043fcb5e7535a690a00cd251b44c9be0be418e5"}, + {file = "PyWavelets-1.1.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:e02a0558e0c2ac8b8bbe6a6ac18c136767ec56b96a321e0dfde2173adfa5a504"}, + {file = "PyWavelets-1.1.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:6162dc0ae04669ea04b4b51420777b9ea2d30b0a9d02901b2a3b4d61d159c2e9"}, + {file = "PyWavelets-1.1.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:39c74740718e420d38c78ca4498568fa57976d78d5096277358e0fa9629a7aea"}, + {file = "PyWavelets-1.1.1-cp38-cp38-win32.whl", hash = "sha256:79f5b54f9dc353e5ee47f0c3f02bebd2c899d49780633aa771fed43fa20b3149"}, + {file = "PyWavelets-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:935ff247b8b78bdf77647fee962b1cc208c51a7b229db30b9ba5f6da3e675178"}, + {file = "PyWavelets-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6ebfefebb5c6494a3af41ad8c60248a95da267a24b79ed143723d4502b1fe4d7"}, + {file = "PyWavelets-1.1.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:6bc78fb9c42a716309b4ace56f51965d8b5662c3ba19d4591749f31773db1125"}, + {file = "PyWavelets-1.1.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:411e17ca6ed8cf5e18a7ca5ee06a91c25800cc6c58c77986202abf98d749273a"}, + {file = "PyWavelets-1.1.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:83c5e3eb78ce111c2f0b45f46106cc697c3cb6c4e5f51308e1f81b512c70c8fb"}, + {file = "PyWavelets-1.1.1-cp39-cp39-win32.whl", hash = "sha256:2b634a54241c190ee989a4af87669d377b37c91bcc9cf0efe33c10ff847f7841"}, + {file = "PyWavelets-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:732bab78435c48be5d6bc75486ef629d7c8f112e07b313bf1f1a2220ab437277"}, + {file = "PyWavelets-1.1.1.tar.gz", hash = "sha256:1a64b40f6acb4ffbaccce0545d7fc641744f95351f62e4c6aaa40549326008c9"}, +] pywin32 = [] -pywinpty = [] +pywinpty = [ + {file = "pywinpty-0.5.7-cp27-cp27m-win32.whl", hash = "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b"}, + {file = "pywinpty-0.5.7-cp27-cp27m-win_amd64.whl", hash = "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2"}, + {file = "pywinpty-0.5.7-cp35-cp35m-win32.whl", hash = "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70"}, + {file = "pywinpty-0.5.7-cp35-cp35m-win_amd64.whl", hash = "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95"}, + {file = "pywinpty-0.5.7-cp36-cp36m-win32.whl", hash = "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2"}, + {file = "pywinpty-0.5.7-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139"}, + {file = "pywinpty-0.5.7-cp37-cp37m-win32.whl", hash = "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d"}, + {file = "pywinpty-0.5.7-cp37-cp37m-win_amd64.whl", hash = "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48"}, + {file = "pywinpty-0.5.7-cp38-cp38-win_amd64.whl", hash = "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c"}, + {file = "pywinpty-0.5.7.tar.gz", hash = "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0"}, +] pyyaml = [] pyzmq = [] qtconsole = [] qtpy = [] regex = [] requests = [] -requests-oauthlib = [] +requests-oauthlib = [ + {file = "requests-oauthlib-1.3.0.tar.gz", hash = "sha256:b4261601a71fd721a8bd6d7aa1cc1d6a8a93b4a9f5e96626f8e4d91e8beeaa6a"}, + {file = "requests_oauthlib-1.3.0-py2.py3-none-any.whl", hash = "sha256:7f71572defaecd16372f9006f33c2ec8c077c3cfa6f5911a9a90202beb513f3d"}, + {file = "requests_oauthlib-1.3.0-py3.7.egg", hash = "sha256:fa6c47b933f01060936d87ae9327fead68768b69c6c9ea2109c48be30f2d4dbc"}, +] rsa = [] -scikit-image = [] -scipy = [] +scikit-image = [ + {file = "scikit-image-0.17.2.tar.gz", hash = "sha256:bd954c0588f0f7e81d9763dc95e06950e68247d540476e06cb77bcbcd8c2d8b3"}, + {file = "scikit_image-0.17.2-cp36-cp36m-macosx_10_13_x86_64.whl", hash = "sha256:11eec2e65cd4cd6487fe1089aa3538dbe25525aec7a36f5a0f14145df0163ce7"}, + {file = "scikit_image-0.17.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:c5c277704b12e702e34d1f7b7a04d5ee8418735f535d269c74c02c6c9f8abee2"}, + {file = "scikit_image-0.17.2-cp36-cp36m-win32.whl", hash = "sha256:1fda9109a19dc9d7a4ac152d1fc226fed7282ad186a099f14c0aa9151f0c758e"}, + {file = "scikit_image-0.17.2-cp36-cp36m-win_amd64.whl", hash = "sha256:86a834f9a4d30201c0803a48a25364fe8f93f9feb3c58f2c483d3ce0a3e5fe4a"}, + {file = "scikit_image-0.17.2-cp37-cp37m-macosx_10_13_x86_64.whl", hash = "sha256:87ca5168c6fc36b7a298a1db2d185a8298f549854342020f282f747a4e4ddce9"}, + {file = "scikit_image-0.17.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:e99fa7514320011b250a21ab855fdd61ddcc05d3c77ec9e8f13edcc15d3296b5"}, + {file = "scikit_image-0.17.2-cp37-cp37m-win32.whl", hash = "sha256:ee3db438b5b9f8716a91ab26a61377a8a63356b186706f5b979822cc7241006d"}, + {file = "scikit_image-0.17.2-cp37-cp37m-win_amd64.whl", hash = "sha256:6b65a103edbc34b22640daf3b084dc9e470c358d3298c10aa9e3b424dcc02db6"}, + {file = "scikit_image-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:c0876e562991b0babff989ff4d00f35067a2ddef82e5fdd895862555ffbaec25"}, + {file = "scikit_image-0.17.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:178210582cc62a5b25c633966658f1f2598615f9c3f27f36cf45055d2a74b401"}, + {file = "scikit_image-0.17.2-cp38-cp38-win32.whl", hash = "sha256:7bedd3881ca4fea657a894815bcd5e5bf80944c26274f6b6417bb770c3f4f8e6"}, + {file = "scikit_image-0.17.2-cp38-cp38-win_amd64.whl", hash = "sha256:113bcacdfc839854f527a166a71768708328208e7b66e491050d6a57fa6727c7"}, +] +scipy = [ + {file = "scipy-1.4.1-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:c5cac0c0387272ee0e789e94a570ac51deb01c796b37fb2aad1fb13f85e2f97d"}, + {file = "scipy-1.4.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:a144811318853a23d32a07bc7fd5561ff0cac5da643d96ed94a4ffe967d89672"}, + {file = "scipy-1.4.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:71eb180f22c49066f25d6df16f8709f215723317cc951d99e54dc88020ea57be"}, + {file = "scipy-1.4.1-cp35-cp35m-win32.whl", hash = "sha256:770254a280d741dd3436919d47e35712fb081a6ff8bafc0f319382b954b77802"}, + {file = "scipy-1.4.1-cp35-cp35m-win_amd64.whl", hash = "sha256:a1aae70d52d0b074d8121333bc807a485f9f1e6a69742010b33780df2e60cfe0"}, + {file = "scipy-1.4.1-cp36-cp36m-macosx_10_6_intel.whl", hash = "sha256:bb517872058a1f087c4528e7429b4a44533a902644987e7b2fe35ecc223bc408"}, + {file = "scipy-1.4.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:dba8306f6da99e37ea08c08fef6e274b5bf8567bb094d1dbe86a20e532aca088"}, + {file = "scipy-1.4.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:386086e2972ed2db17cebf88610aab7d7f6e2c0ca30042dc9a89cf18dcc363fa"}, + {file = "scipy-1.4.1-cp36-cp36m-win32.whl", hash = "sha256:8d3bc3993b8e4be7eade6dcc6fd59a412d96d3a33fa42b0fa45dc9e24495ede9"}, + {file = "scipy-1.4.1-cp36-cp36m-win_amd64.whl", hash = "sha256:dc60bb302f48acf6da8ca4444cfa17d52c63c5415302a9ee77b3b21618090521"}, + {file = "scipy-1.4.1-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:787cc50cab3020a865640aba3485e9fbd161d4d3b0d03a967df1a2881320512d"}, + {file = "scipy-1.4.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:0902a620a381f101e184a958459b36d3ee50f5effd186db76e131cbefcbb96f7"}, + {file = "scipy-1.4.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:00af72998a46c25bdb5824d2b729e7dabec0c765f9deb0b504f928591f5ff9d4"}, + {file = "scipy-1.4.1-cp37-cp37m-win32.whl", hash = "sha256:9508a7c628a165c2c835f2497837bf6ac80eb25291055f56c129df3c943cbaf8"}, + {file = "scipy-1.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a2d6df9eb074af7f08866598e4ef068a2b310d98f87dc23bd1b90ec7bdcec802"}, + {file = "scipy-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3092857f36b690a321a662fe5496cb816a7f4eecd875e1d36793d92d3f884073"}, + {file = "scipy-1.4.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:8a07760d5c7f3a92e440ad3aedcc98891e915ce857664282ae3c0220f3301eb6"}, + {file = "scipy-1.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:1e3190466d669d658233e8a583b854f6386dd62d655539b77b3fa25bfb2abb70"}, + {file = "scipy-1.4.1-cp38-cp38-win32.whl", hash = "sha256:cc971a82ea1170e677443108703a2ec9ff0f70752258d0e9f5433d00dda01f59"}, + {file = "scipy-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:2cce3f9847a1a51019e8c5b47620da93950e58ebc611f13e0d11f4980ca5fecb"}, + {file = "scipy-1.4.1.tar.gz", hash = "sha256:dee1bbf3a6c8f73b6b218cb28eed8dd13347ea2f87d572ce19b289d6fd3fbc59"}, +] seaborn = [ {file = "seaborn-0.10.1-py3-none-any.whl", hash = "sha256:c901ce494541fb4714cfa7db79d0232dc3f4c4dfd3f273bacf17816084df5b53"}, {file = "seaborn-0.10.1.tar.gz", hash = "sha256:2d1a0c9d6bd1bc3cadb0364b8f06540f51322a670cf8438d0fde1c1c7317adc0"}, ] -send2trash = [] +send2trash = [ + {file = "Send2Trash-1.5.0-py3-none-any.whl", hash = "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b"}, + {file = "Send2Trash-1.5.0.tar.gz", hash = "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2"}, +] shapely = [] -six = [] +six = [ + {file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, + {file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, +] tensorboard = [ - {file = "tensorboard-2.2.2-py3-none-any.whl", hash = "sha256:a3feb73e1221c0a512398ad2cd08570fb082d8a2ba364aa0562543ecbd3659ef"}, + {file = "tensorboard-2.9.1-py3-none-any.whl", hash = "sha256:baa727f791776f9e5841d347127720ceed4bbd59c36b40604b95fb2ae6029276"}, +] +tensorboard-data-server = [ + {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, + {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, + {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, ] tensorboard-plugin-wit = [] tensorflow = [ - {file = "tensorflow-2.2.3-cp36-cp36m-macosx_10_11_x86_64.whl", hash = "sha256:ed47f4619dffd82d07fc0805eb2bd3039f644996f17c93d7a29ee4e455eb4632"}, - {file = "tensorflow-2.2.3-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:61c3f0443c3f7e7a9d772098943bec3db0c08b76441d314e6c51edb23ca9a6eb"}, - {file = "tensorflow-2.2.3-cp36-cp36m-win_amd64.whl", hash = "sha256:b44530b63a72b87adbbfbc513cc2389d893934384e9d0e3f3b7f925149f9b4f5"}, - {file = "tensorflow-2.2.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:69cdf6c6e4b313621de5e5caf118048b7a61a315b757d0dd1e77d02f030a2e4c"}, - {file = "tensorflow-2.2.3-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:3ee49c004528c003bdf431f1f8cc0ea43f668a29ea92aae6abb4ba6ce9173322"}, - {file = "tensorflow-2.2.3-cp37-cp37m-win_amd64.whl", hash = "sha256:ae61123a2130ad632ee60ef784b5b90b6a0efbc955cdf87a5600f2bcc75869e0"}, - {file = "tensorflow-2.2.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:00aa9c594c15f87ce3862d8b0c3f922453f853f3b9fdf8138ccd5f5f1bf9b2ab"}, - {file = "tensorflow-2.2.3-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:ad78577b15990f475070f41fe470f0cea8f7e03b0961e1588269171a2d9e170c"}, - {file = "tensorflow-2.2.3-cp38-cp38-win_amd64.whl", hash = "sha256:6db80867a51ef1d95228b7cf8fa0a6de262100a7eb81d4718ea37ba67817b64f"}, + {file = "tensorflow-2.9.1-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:2c77edeb4a9d542032ddac93f732e3dd3d1c4d15c8795e4e43166ed46503582d"}, + {file = "tensorflow-2.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:add2f4e55fd7209a5cb01d815364adc9827184d74a83c2f1616c72be2e85c8b7"}, + {file = "tensorflow-2.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:8be7d7f6091ac5af09c19eb178bbbd51346794684851a7bd57826d2d1cfa220e"}, + {file = "tensorflow-2.9.1-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:b1f7674220b19ab5d39d9313f9c60278cef56052614600cba192700c658e502c"}, + {file = "tensorflow-2.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:488a7a964298b92278cca593b7f687abd1c8f51982a08dc6ded5efd9457bf477"}, + {file = "tensorflow-2.9.1-cp37-cp37m-win_amd64.whl", hash = "sha256:abbdcfa7c14974f9bafa8f51214c037639a8991eef3dbcafc506e608a673c54c"}, + {file = "tensorflow-2.9.1-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:df048d216f90c9fcbda22bdd03420b0e0e6e7ee98b8b91f221afef46b7664635"}, + {file = "tensorflow-2.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adc1b80ec32337ba1720fadbf64242aae06a7ee1c7aea6a1a0cffe1968c89b25"}, + {file = "tensorflow-2.9.1-cp38-cp38-win_amd64.whl", hash = "sha256:a27bffb91f0aef6ba2a30f6507932d9c6801af56cfee8442767f9f3f69bb37a6"}, + {file = "tensorflow-2.9.1-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:81ad045d39cf4360d5e6183cdda0990661302cca502917a12e54177989b340b9"}, + {file = "tensorflow-2.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:212a4d97fb6dedff257703d7a2ce50b0b8ec23d955938083363aa7bc526918cc"}, + {file = "tensorflow-2.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:1c2c6557f6bd7e0d3f1063e27346e4f1c4353db2b7751ac7451033b335fa4b7c"}, ] tensorflow-addons = [] tensorflow-datasets = [] tensorflow-estimator = [ - {file = "tensorflow_estimator-2.2.0-py2.py3-none-any.whl", hash = "sha256:d09dacdd127f2579cea8d5af21f4a918036b8ae246adc82f26b61f91cc247dc2"}, + {file = "tensorflow_estimator-2.9.0-py2.py3-none-any.whl", hash = "sha256:e9762bb302f51bc1eb2f35d19f0190a6a2d809d754d5def788c4328fe3746744"}, ] -tensorflow-metadata = [] -tensorflow-probability = [ - {file = "tensorflow_probability-0.9.0-py2.py3-none-any.whl", hash = "sha256:66928dcbbc12987e574232a576bd9643ba7ca6b2a837f2182417286ac955d50f"}, +tensorflow-io-gcs-filesystem = [ + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:4222a9d0c0ddeca2fd2bfd70f5ed149346f5ba12ffe65d817d8e18393341d8e2"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5457eeef1f0f5f294225808b2290a251a2e4639ec66db9d32aa4ae62e807d7e8"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c71cebb26ce10e6e48dc46e6fc0acef5329b01f75a5e76c7defb77175bf97f7"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp310-cp310-win_amd64.whl", hash = "sha256:1c165595c7a67668b44c7ffb9746ffb351c630940d9cca7f2b31f8adf7a36b94"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:c20e1f95b904f43ac86fdb251f222be2c3e7026e9ddbde2a3b6a456f26a83944"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1cccdc12ec304a7ab3e6f85919ba5a77c2bf751b3d0f9e62196ee7df11a8136a"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94645cac4449dd2ccc40327c23d0256cf4e96597e5a55116a91076e9dc96023e"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ce0d7eaaebfcb5fdcff161af0e8a4b94d5dc346299111c08373d66058011a16d"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:e9569dadd79b2d4b28dbe5be47c378a884414a85c89eaeae6115bcba4f3cbb96"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:84a463e228cde296fc63672902a2eceac9fec5f8ae7605e9f18824db591e7f5c"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531214e48ef64a96f565550b283e75cf0119abff14048a11a25453b47ec5b61c"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp38-cp38-win_amd64.whl", hash = "sha256:44b28c9c6a9e25774a53ec2e85ed4d0b5c4db3a7d3a4011ade94fa9ee636393c"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:09f9df13737e2b4d92b73653509281d77732ef9a90a1ebef824511ce5431eb0a"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c71438e6459f52462b95f98ab17b20cd1a269a1efe837e4df426a0b79359f3b7"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd285595afe03740553710ccdbd1397d69a8e48d758c731c0de1f1c5a71a9fe5"}, + {file = "tensorflow_io_gcs_filesystem-0.26.0-cp39-cp39-win_amd64.whl", hash = "sha256:2940b4ab6848ef5ec34dc3c140b5ae9eba0da13453da839c30ebe3461a6eb51d"}, ] +tensorflow-metadata = [] +tensorflow-probability = [] termcolor = [ {file = "termcolor-1.1.0.tar.gz", hash = "sha256:1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b"}, ] terminado = [] -testpath = [] +testpath = [ + {file = "testpath-0.4.4-py2.py3-none-any.whl", hash = "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4"}, + {file = "testpath-0.4.4.tar.gz", hash = "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e"}, +] tifffile = [] toml = [] tornado = [] tqdm = [] -traitlets = [] -typed-ast = [] +traitlets = [ + {file = "traitlets-4.3.3-py2.py3-none-any.whl", hash = "sha256:70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44"}, + {file = "traitlets-4.3.3.tar.gz", hash = "sha256:d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7"}, +] +typed-ast = [ + {file = "typed_ast-1.4.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:73d785a950fc82dd2a25897d525d003f6378d1cb23ab305578394694202a58c3"}, + {file = "typed_ast-1.4.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:aaee9905aee35ba5905cfb3c62f3e83b3bec7b39413f0a7f19be4e547ea01ebb"}, + {file = "typed_ast-1.4.1-cp35-cp35m-win32.whl", hash = "sha256:0c2c07682d61a629b68433afb159376e24e5b2fd4641d35424e462169c0a7919"}, + {file = "typed_ast-1.4.1-cp35-cp35m-win_amd64.whl", hash = "sha256:4083861b0aa07990b619bd7ddc365eb7fa4b817e99cf5f8d9cf21a42780f6e01"}, + {file = "typed_ast-1.4.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:269151951236b0f9a6f04015a9004084a5ab0d5f19b57de779f908621e7d8b75"}, + {file = "typed_ast-1.4.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:24995c843eb0ad11a4527b026b4dde3da70e1f2d8806c99b7b4a7cf491612652"}, + {file = "typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:fe460b922ec15dd205595c9b5b99e2f056fd98ae8f9f56b888e7a17dc2b757e7"}, + {file = "typed_ast-1.4.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:fcf135e17cc74dbfbc05894ebca928ffeb23d9790b3167a674921db19082401f"}, + {file = "typed_ast-1.4.1-cp36-cp36m-win32.whl", hash = "sha256:4e3e5da80ccbebfff202a67bf900d081906c358ccc3d5e3c8aea42fdfdfd51c1"}, + {file = "typed_ast-1.4.1-cp36-cp36m-win_amd64.whl", hash = "sha256:249862707802d40f7f29f6e1aad8d84b5aa9e44552d2cc17384b209f091276aa"}, + {file = "typed_ast-1.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8ce678dbaf790dbdb3eba24056d5364fb45944f33553dd5869b7580cdbb83614"}, + {file = "typed_ast-1.4.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:c9e348e02e4d2b4a8b2eedb48210430658df6951fa484e59de33ff773fbd4b41"}, + {file = "typed_ast-1.4.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:bcd3b13b56ea479b3650b82cabd6b5343a625b0ced5429e4ccad28a8973f301b"}, + {file = "typed_ast-1.4.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:f208eb7aff048f6bea9586e61af041ddf7f9ade7caed625742af423f6bae3298"}, + {file = "typed_ast-1.4.1-cp37-cp37m-win32.whl", hash = "sha256:d5d33e9e7af3b34a40dc05f498939f0ebf187f07c385fd58d591c533ad8562fe"}, + {file = "typed_ast-1.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:0666aa36131496aed8f7be0410ff974562ab7eeac11ef351def9ea6fa28f6355"}, + {file = "typed_ast-1.4.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:d205b1b46085271b4e15f670058ce182bd1199e56b317bf2ec004b6a44f911f6"}, + {file = "typed_ast-1.4.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:6daac9731f172c2a22ade6ed0c00197ee7cc1221aa84cfdf9c31defeb059a907"}, + {file = "typed_ast-1.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:498b0f36cc7054c1fead3d7fc59d2150f4d5c6c56ba7fb150c013fbc683a8d2d"}, + {file = "typed_ast-1.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:7e4c9d7658aaa1fc80018593abdf8598bf91325af6af5cce4ce7c73bc45ea53d"}, + {file = "typed_ast-1.4.1-cp38-cp38-win32.whl", hash = "sha256:715ff2f2df46121071622063fc7543d9b1fd19ebfc4f5c8895af64a77a8c852c"}, + {file = "typed_ast-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:fc0fea399acb12edbf8a628ba8d2312f583bdbdb3335635db062fa98cf71fca4"}, + {file = "typed_ast-1.4.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:d43943ef777f9a1c42bf4e552ba23ac77a6351de620aa9acf64ad54933ad4d34"}, + {file = "typed_ast-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:92c325624e304ebf0e025d1224b77dd4e6393f18aab8d829b5b7e04afe9b7a2c"}, + {file = "typed_ast-1.4.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:d648b8e3bf2fe648745c8ffcee3db3ff903d0817a01a12dd6a6ea7a8f4889072"}, + {file = "typed_ast-1.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:fac11badff8313e23717f3dada86a15389d0708275bddf766cca67a84ead3e91"}, + {file = "typed_ast-1.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:0d8110d78a5736e16e26213114a38ca35cb15b6515d535413b090bd50951556d"}, + {file = "typed_ast-1.4.1-cp39-cp39-win32.whl", hash = "sha256:b52ccf7cfe4ce2a1064b18594381bccf4179c2ecf7f513134ec2f993dd4ab395"}, + {file = "typed_ast-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:3742b32cf1c6ef124d57f95be609c473d7ec4c14d0090e5a5e05a15269fb4d0c"}, + {file = "typed_ast-1.4.1.tar.gz", hash = "sha256:8c8aaad94455178e3187ab22c8b01a3837f8ee50e09cf31f1ba129eb293ec30b"}, +] typeguard = [] +typing-extensions = [] urllib3 = [] wcwidth = [] webencodings = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] -werkzeug = [] -widgetsnbextension = [] -wrapt = [] -zipp = [] +werkzeug = [ + {file = "Werkzeug-1.0.1-py2.py3-none-any.whl", hash = "sha256:2de2a5db0baeae7b2d2664949077c2ac63fbd16d98da0ff71837f7d1dea3fd43"}, + {file = "Werkzeug-1.0.1.tar.gz", hash = "sha256:6c80b1e5ad3665290ea39320b91e1be1e0d5f60652b964a3070216de83d2e47c"}, +] +widgetsnbextension = [ + {file = "widgetsnbextension-3.5.1-py2.py3-none-any.whl", hash = "sha256:bd314f8ceb488571a5ffea6cc5b9fc6cba0adaf88a9d2386b93a489751938bcd"}, + {file = "widgetsnbextension-3.5.1.tar.gz", hash = "sha256:079f87d87270bce047512400efd70238820751a11d2d8cb137a5a5bdbaf255c7"}, +] +wrapt = [ + {file = "wrapt-1.12.1.tar.gz", hash = "sha256:b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7"}, +] +zipp = [ + {file = "zipp-3.1.0-py3-none-any.whl", hash = "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b"}, + {file = "zipp-3.1.0.tar.gz", hash = "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96"}, +] diff --git a/pyproject.toml b/pyproject.toml index 31dddc3..86706de 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,10 +5,10 @@ description = "Model builders for some State-of-the-Art architectures in few-sho authors = ["Clément Walter "] [tool.poetry.dependencies] -python = "^3.6.5" -tensorflow = "2.2.3" +python = ">=3.7,<3.11" +tensorflow = "2.9.1" tqdm = "^4.42.0" -tensorflow-probability = "^0.9.0" +tensorflow-probability = "^0.17.0" protobuf = "~=3.19.0" [tool.poetry.dev-dependencies]