-
Notifications
You must be signed in to change notification settings - Fork 31
/
DBN.py
665 lines (568 loc) · 25.6 KB
/
DBN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
"""
"""
import cPickle
import os
import sys
import time
import os.path as path
import copy
import numpy
import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams
from DeepLearningTutorials.code.mlp import HiddenLayer
from DeepLearningTutorials.code.rbm import RBM
from PIL import Image
import myparser
from midi.utils import midiwrite
# compute_test_value is 'off' by default, meaning this feature is inactive
theano.config.compute_test_value = 'off' # Use 'warn' to activate this feature
# For switching between 32 and 64 bit systems, because Theano is a little silly
# like that.
NUMPY_DTYPE = numpy.float64
# start-snippet-1
class AutoencodingDBN(object):
"""
An autoencoding Deep Belief Network, based on the classifying DBN in the
Theano tutorial. (Most of the code is copied over.)
"""
def __init__(self, numpy_rng, theano_rng=None, n_ins=784,
hidden_layers_sizes=[1000, 1000, 1000]):
"""This class is made to support a variable number of layers.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: numpy random number generator used to draw initial
weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng`
:type n_ins: int
:param n_ins: dimension of the input to the DBN
:type hidden_layers_sizes: list of ints
:param hidden_layers_sizes: intermediate layers size, must contain
at least one value
:type n_outs: int
:param n_outs: dimension of the output of the network
"""
self.sigmoid_layers = []
self.rbm_layers = []
self.params = []
self.n_layers = len(hidden_layers_sizes)
self.layer_sizes = hidden_layers_sizes
assert self.n_layers > 0
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
# allocate symbolic variables for the data
self.x = T.matrix('x') # the data is presented as rasterized images
self.x_mask = T.matrix('x_mask') # For partial information.
# end-snippet-1
# The DBN is an MLP, for which all weights of intermediate
# layers are shared with a different RBM. We will first
# construct the DBN as a deep multilayer perceptron, and when
# constructing each sigmoidal layer we also construct an RBM
# that shares weights with that layer. During pretraining we
# will train these RBMs (which will lead to chainging the
# weights of the MLP as well) During finetuning we will finish
# training the DBN by doing stochastic gradient descent on the
# MLP.
for i in xrange(self.n_layers):
# construct the sigmoidal layer
# the size of the input is either the number of hidden
# units of the layer below or the input size if we are on
# the first layer
if i == 0:
input_size = n_ins
else:
input_size = hidden_layers_sizes[i - 1]
# the input to this layer is either the activation of the
# hidden layer below or the input of the DBN if you are on
# the first layer
if i == 0:
layer_input = self.x
else:
layer_input = self.sigmoid_layers[-1].output
sigmoid_layer = HiddenLayer(rng=numpy_rng,
input=layer_input,
n_in=input_size,
n_out=hidden_layers_sizes[i],
activation=T.nnet.sigmoid)
# add the layer to our list of layers
self.sigmoid_layers.append(sigmoid_layer)
# Construct an RBM that shared weights with this layer
rbm_layer = RBM(numpy_rng=numpy_rng,
theano_rng=theano_rng,
input=layer_input,
n_visible=input_size,
n_hidden=hidden_layers_sizes[i],
W=sigmoid_layer.W,
hbias=sigmoid_layer.b)
self.rbm_layers.append(rbm_layer)
self.params.extend(rbm_layer.params)
# And build the upside-down network. This shares parameters with the
# forward network. Except the weights are transposed and stuff.
# The "isolated" layers let you run only the upside-down part of the
# network, for generation. The non-isolated layers are connected to
# the forward, compressing part of the network, and are used for
# training.
reverse_input = self.sigmoid_layers[-1].output
self.isolated_reverse_input = theano.shared(
numpy.zeros([10, hidden_layers_sizes[-1]]))
isolated_input = self.isolated_reverse_input
self.reverse_layers = [None] * self.n_layers
self.isolated_reverse = [None] * self.n_layers
for i in reversed(xrange(self.n_layers)):
if i == 0:
out_size = n_ins
else:
out_size = hidden_layers_sizes[i-1]
reverse_sigmoid = HiddenLayer(rng=numpy_rng,
input=reverse_input,
n_in=hidden_layers_sizes[i],
n_out=out_size,
W=self.sigmoid_layers[i].W.T,
b=self.rbm_layers[i].vbias,
activation=T.nnet.sigmoid
)
isolated_sigmoid = HiddenLayer(rng=numpy_rng,
input=isolated_input,
n_in=hidden_layers_sizes[i],
n_out=out_size,
W=self.sigmoid_layers[i].W.T,
b=self.rbm_layers[i].vbias,
activation=T.nnet.sigmoid
)
reverse_input = reverse_sigmoid.output
isolated_input = isolated_sigmoid.output
self.reverse_layers[i] = reverse_sigmoid
self.isolated_reverse[i] = isolated_sigmoid
# The fine-tune cost is the reconstruction error of the entire net.
self.finetune_cost = ((self.x - self.reverse_layers[0].output)**2).sum()
# The cost for training the generative net - in this case, self.x is
# completely disconnected, and we feed a pattern into the reverse net.
self.generative_cost = ((self.x - self.isolated_reverse[0].output)**2).sum()
# The l1 cost is for generating constrained samples of the input. (Aka
# harmonizing a melody.) Given a melody in self.x and a mask
# self.x_mask of which parts of self.x actually matter, it computes the
# error between the generated sample and the melody.
self.l1_cost = (((self.x - self.isolated_reverse[0].output) * self.x_mask)**2).sum()
def dump_params(self, outLoc):
"""
Takes all of the weights, and stores them as numpy arrays.
This is so the params are portable between GPU machines and CPU machines.
To load the params, you need to call load_from_dump, which re-makes your
DBN.
"""
dump = {}
for layer in range(self.n_layers):
dump[(layer, 0)] = numpy.array(self.sigmoid_layers[layer].W.get_value())
dump[(layer, 1)] = numpy.array(self.sigmoid_layers[layer].b.get_value())
dump[(layer, 2)] = numpy.array(self.reverse_layers[layer].b.get_value())
cPickle.dump(dump, open(outLoc, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
def pretraining_functions(self, train_set_x, batch_size, k):
'''Generates a list of functions, for performing one step of
gradient descent at a given layer. The function will require
as input the minibatch index, and to train an RBM you just
need to iterate, calling the corresponding function on all
minibatch indexes.
:type train_set_x: theano.tensor.TensorType
:param train_set_x: Shared var. that contains all datapoints used
for training the RBM
:type batch_size: int
:param batch_size: size of a [mini]batch
:param k: number of Gibbs steps to do in CD-k / PCD-k
'''
# index to a [mini]batch
index = T.lscalar('index') # index to a minibatch
learning_rate = T.scalar('lr') # learning rate to use
# number of batches
n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
# begining of a batch, given `index`
batch_begin = index * batch_size
# ending of a batch given `index`
batch_end = batch_begin + batch_size
pretrain_fns = []
for rbm in self.rbm_layers:
# get the cost and the updates list
# using CD-k here (persisent=None) for training each RBM.
# TODO: change cost function to reconstruction error
cost, updates = rbm.get_cost_updates(learning_rate,
persistent=None, k=k)
# compile the theano function
fn = theano.function(
inputs=[index, theano.Param(learning_rate, default=0.1)],
outputs=cost,
updates=updates,
givens={
self.x: train_set_x[batch_begin:batch_end]
}
)
# append `fn` to the list of functions
pretrain_fns.append(fn)
return pretrain_fns
def build_finetune_functions(self, train_set_x, batch_size, learning_rate):
'''Generates a function `train` that implements one step of
finetuning, a function `validate` that computes the error on a
batch from the validation set, and a function `test` that
computes the error on a batch from the testing set
:type datasets: list of pairs of theano.tensor.TensorType
:param datasets: It is a list that contain all the datasets;
the has to contain three pairs, `train`,
`valid`, `test` in this order, where each pair
is formed of two Theano variables, one for the
datapoints, the other for the labels
:type batch_size: int
:param batch_size: size of a minibatch
:type learning_rate: float
:param learning_rate: learning rate used during finetune stage
'''
index = T.lscalar('index') # index to a [mini]batch
n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
# compute the gradients with respect to the model parameters
gparams = T.grad(self.finetune_cost, self.params)
# compute list of fine-tuning updates
updates = []
for param, gparam in zip(self.params, gparams):
updates.append((param, param - gparam * learning_rate))
train_fn = theano.function(
inputs=[index],
outputs=self.finetune_cost,
updates=updates,
givens={
self.x: train_set_x[
index * batch_size: (index + 1) * batch_size
],
}
)
test_score_i = theano.function(
[index],
self.finetune_cost,
givens={
self.x: train_set_x[
index * batch_size: (index + 1) * batch_size
],
}
)
# Create a function that scans the entire test set
def test_score():
return [test_score_i(i) for i in xrange(n_batches)]
return train_fn, test_score
def build_generative_finetune_fns(self, train_set_outputs, train_set_labels,
batch_size, learning_rate):
index = T.lscalar('index') # index to a [mini]batch
n_batches = train_set_outputs.get_value(borrow=True).shape[0] / batch_size
# compute the gradients with respect to the model parameters
# First, only one of the RBM biases is actually a parameter of the
# generative model, so we have to fix that.
gen_params = []
for i in range(self.n_layers):
gen_params.append(self.rbm_layers[i].vbias)
gen_params.append(self.rbm_layers[i].W)
gparams = T.grad(self.generative_cost, gen_params)
# compute list of fine-tuning updates
updates = []
for param, gparam in zip(gen_params, gparams):
updates.append((param, param - gparam * learning_rate))
train_fn = theano.function(
inputs=[index],
outputs=self.generative_cost,
updates=updates,
givens={
self.x: train_set_outputs[
index * batch_size: (index + 1) * batch_size
],
self.isolated_reverse[-1].input: train_set_labels[
index * batch_size: (index + 1) * batch_size
],
}
)
test_score_i = theano.function(
[index],
self.generative_cost,
givens={
self.x: train_set_outputs[
index * batch_size: (index + 1) * batch_size
],
self.isolated_reverse[-1].input: train_set_labels[
index * batch_size: (index + 1) * batch_size
],
}
)
# Create a function that scans the entire test set
def test_score():
return [test_score_i(i) for i in xrange(n_batches)]
return train_fn, test_score
def generate(self, top_level):
"""
Make a new piano roll, given top level values. (Uses the backwards
section of the network to make a sample.)
"""
generator = theano.function(
[],
self.reverse_layers[0].output,
givens={
self.reverse_layers[-1].input: top_level
}
)
return generator()
def label(self, to_label, x_mask, learning_rate):
"""
Estimate top layer, given an incomplete layer 1.
x_mask represents which values of to_label are unknown.
"""
grad = T.grad(self.l1_cost, self.isolated_reverse_input)
# compute list of fine-tuning updates
updates = (self.isolated_reverse_input,
self.isolated_reverse_input - grad * learning_rate)
train_fn = theano.function(
inputs=[],
outputs=self.l1_cost,
updates=[updates],
givens={
self.x: to_label,
self.x_mask: x_mask,
}
)
return train_fn
def train_dbn(self, data_file, finetune_lr=0.01, pretraining_epochs=100,
pretrain_lr=0.05, k=1, training_epochs=1000, batch_size=10):
raw_x = cPickle.load(open(data_file, 'rb')).astype(dtype=NUMPY_DTYPE)
train_set_x = theano.shared(raw_x)
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
print n_train_batches
# start-snippet-2
#########################
# PRETRAINING THE MODEL #
#########################
print '... getting the pretraining functions'
pretraining_fns = self.pretraining_functions(train_set_x=train_set_x,
batch_size=batch_size,
k=k)
print '... pre-training the model'
start_time = time.clock()
## Pre-train layer-wise
for i in xrange(self.n_layers - 1):
# go through pretraining epochs
for epoch in xrange(pretraining_epochs):
# go through the training set
c = []
for batch_index in xrange(n_train_batches):
c.append(pretraining_fns[i](index=batch_index,
lr=pretrain_lr))
print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
print numpy.mean(c)
end_time = time.clock()
# end-snippet-2
print >> sys.stderr, ('The pretraining code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
# If you'd like to try out different parameters for the fine-tuner only,
# you can cache the initial model state, so you don't have to pre-train
# every time.
cPickle.dump(self, open('initial-model.pickle', 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
########################
# FINETUNING THE MODEL #
########################
# get the training, validation and testing function for the model
print '... getting the finetuning functions'
use_autoencoder = False
if use_autoencoder:
train_fn, test_model = self.build_finetune_functions(
train_set_x=train_set_x,
batch_size=batch_size,
learning_rate=finetune_lr
)
else:
raw_labels = numpy.random.randint(2,
size=[raw_x.shape[0], self.layer_sizes[-1]])\
.astype(dtype=numpy.float64)
labels = theano.shared(raw_labels)
train_fn, test_model = self.build_generative_finetune_fns(
train_set_outputs=train_set_x,
train_set_labels=labels,
batch_size=batch_size,
learning_rate=finetune_lr
)
print '... finetuning the model'
# early-stopping parameters
patience = 4 * n_train_batches # look as this many examples regardless
patience_increase = 2. # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatches before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = numpy.inf
test_score = 0.
start_time = time.clock()
done_looping = False
epoch = 0
while (epoch < training_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
minibatch_avg_cost = train_fn(minibatch_index)
iter = (epoch - 1) * n_train_batches + minibatch_index
if (iter + 1) % validation_frequency == 0:
validation_losses = test_model()
this_validation_loss = numpy.mean(validation_losses)
print(
'epoch %i, minibatch %i/%i, validation error %f %%'
% (
epoch,
minibatch_index + 1,
n_train_batches,
this_validation_loss * 100.
)
)
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if (
this_validation_loss < best_validation_loss *
improvement_threshold
):
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print(
(
'Optimization complete with best validation score of %f, '
'obtained at iteration %i, '
) % (best_validation_loss, best_iter + 1)
)
print >> sys.stderr, ('The fine tuning code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time)
/ 60.))
self.dump_params('./my-model.pickle')
def sample(self, top_level=None, rootLoc='./', save=True, threshold=0.5,
filename='test.midi'):
"""
Generates a sample from the trained neural net. top_level is a 10 x
[size of top layer] matrix whose rows contain values for the top
layer. Most of the time, I only use the first row, but you can only
process data in increments of batch_size.
"""
if top_level is None:
top_level_size = self.layer_sizes[-1]
top_level = numpy.random.randint(2, size=[10, top_level_size])\
.astype(dtype=NUMPY_DTYPE)
output = self.generate(top_level)
output = output.reshape([10, 88*64])
firstIm = output[0, :].reshape([88, 64])
# Makes a little picture of the piano roll.
outIm = Image.fromarray((firstIm*255).astype('uint8'))
outIm.save(path.join(rootLoc, 'test.png'))
if threshold is not None:
firstIm[firstIm > threshold] = 1
firstIm[firstIm <= threshold] = 0
if save:
midiwrite(path.join(rootLoc, filename), firstIm.T, r=(12, 109), dt=64)
return firstIm
def label_from_file(self, rootLoc, fileLoc, learn_rate, n_iters, threshold):
"""
Given a xml file at fileLoc, harmonizes the melody in the xml file, by
doing gradient descent on the top hidden layer of the network. This
gives us an estimate of the top layer activations that might generate
the melody. We then run the network forwards to get the entire harmony
from the top level activations that we estimate.
"""
noteReader = myparser.LegatoNoteAdder(64)
myparser.read(fileLoc, noteReader.handle)
snippet = noteReader.mtx
mask = melody_blocker(snippet)
linear_snippet = snippet.reshape([88*64])
linear_mask = mask.reshape([88*64])
in_data = numpy.zeros([10, 88*64])
x_mask = numpy.zeros([10, 88*64])
for i in range(10):
in_data[i, :] = linear_snippet
x_mask[i, :] = linear_mask
# Do gradient descent to estimate the activations on layer 1.
new_vals = theano.shared(
value=numpy.random.sample([10, self.layer_sizes[-1]]),
)
f = theano.function(
inputs=[],
updates=[(self.isolated_reverse_input, new_vals)],
)
f()
trainer = self.label(in_data, x_mask, learn_rate)
for i in range(n_iters):
print trainer()
# Then, generate using it.
result = dbn.sample(self.isolated_reverse_input, rootLoc=rootLoc, save=False,
threshold=threshold)
# Add the melody back onto the snippet.
final = result * (1.0 - mask)
final = final + snippet
final[final > 0.5] = 1
midiwrite(path.join(rootLoc, 'test.midi'), final.T, r=(12, 109), dt=64)
return final
def melody_blocker(snippet):
"""
Makes a mask where anything above the top line of the snippet is 1. Also
enforces empty space a major 2nd above and below the melody. (This means
the optimizer will consider any note above the top line of the melody, or
too close to the melody, wrong.)
"""
envelope = numpy.copy(snippet)
_, length = snippet.shape
for i in range(length):
occupied = [x for x in range(88) if snippet[x, i] != 0]
if len(occupied) == 0:
continue
top = max(occupied)
envelope[top:, i] = 1
for pitch in occupied:
envelope[pitch-2:pitch+3, i] = 1
return envelope
def load_from_dump(inLoc):
"""
Loads data from dumped state (generated by dumped_params), and creates a
new DBN.
"""
dump = cPickle.load(open(inLoc, 'rb'))
# Get the number of layers.
max_layer = 0
for layer, _ in dump:
if layer > max_layer:
max_layer = layer
max_layer += 1
# Get the size of each layer.
layer_sizes = []
for layer in range(max_layer):
layer_sizes.append(len(dump[(layer, 1)]))
# For now, the size of the input is fixed at 88x64, but you can read that
# out of the dump, as well.
dbn = AutoencodingDBN(numpy_rng=numpy.random.RandomState(),
n_ins=88*64,
hidden_layers_sizes=layer_sizes)
for layer in range(max_layer):
dbn.sigmoid_layers[layer].W.set_value(dump[(layer, 0)])
dbn.sigmoid_layers[layer].b.set_value(dump[(layer, 1)])
dbn.reverse_layers[layer].b.set_value(dump[(layer, 2)])
return dbn
if __name__ == '__main__':
if sys.argv[1] == 'train':
dbn = AutoencodingDBN(numpy_rng=numpy.random.RandomState(),
n_ins=88*64,
hidden_layers_sizes=[1024, 256, 64])
dbn.train_dbn('./joplin-data.pickle')
exit()
dbn = load_from_dump('./joplin-model.pickle')
import sys
if sys.argv[1] == 'sample':
dbn.sample(threshold=0.5)
elif sys.argv[1] == 'harmonize':
dbn.label_from_file(path.dirname(sys.argv[0]), './12-days.xml',
0.01, 500, 0.4)
else:
print "invalid command"