Skip to content

Latest commit

 

History

History
217 lines (147 loc) · 6.17 KB

File metadata and controls

217 lines (147 loc) · 6.17 KB
Error in user YAML: (<unknown>): found character that cannot start any token while scanning for the next token at line 11 column 1
---
theme: kit
title: Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation
subtitle:  'Seminar: Speech-to-Speech translation'
author: 'Dennis Keck'
institute: 'Interactive Systems Labs (ISL)'
date: July 15th, 2019
toc: false
slide_level: 2
header-includes:
    - '`\usepackage{amsmath}`{=latex}'
	- '`\usepackage[mathscr]{euscript}`{=latex}'
	- '`\newcommand{\sep}{\,;\,}`{=latex}'
	- '`\newcommand{\LSTM}{\mathrm{LSTM}}`{=latex}'
	- '`\newcommand{\Attention}{\mathrm{Attention}}`{=latex}'
	- '`\newcommand{\weight}[1]{\mathnormal{#1}}`{=latex}'
	- '`\newcommand{\var}[1]{\mathit{#1}}`{=latex}'
	- '`\usefonttheme[onlymath]{serif}`{=latex}'
	- '`\usepackage[side]{footmisc}`{=latex}'
	- '`\newcommand{\columnsbegin}{\begin{columns}}`{=latex}'
	- '`\newcommand{\columnsend}{\end{columns}}`{=latex}'
---

Introduction

Abstract

Attention-Passing Models for Robust\newline and Data-Efficient End-to-End Speech Translation\newline Matthias Sperber, Graham Neubig, Jan Niehues, Alex Waibel \newline \newline \newline Three main achievements:

  • Compares performance and data efficiency of direct to cascaded models for speech translation
  • Application of a two-stage model for end to end speech translation
  • Introduction of an attention-passing enhancement for the two-stage model

Context

  • Speech translation: audio input $\rightarrow$ text translations
  • Previously: cascadeding an automatic speech recognition (ASR) \newline and a machine translation (MT) component
  • Problem: propagation of error, source text coming from ASR component might be erroneous and lead to folow-up errors

Context

  • More recently: Huge interest in direct models for end to end training of speech translation
  • But: Reports comparing direct and cascaded models give no clear result yet
  • But: usually more training data available for cascaded models as ASR and MT components can be trained seperately

Overview (Task)

{ height=85% }

Attention mechanism

Vanilla sequence to sequence model

  • Fixed context vector length from encoder's last hidden state
  • Problem: Can't remember long sentences. Model has "forgotten" first part when processing whole input.

Attention basic idea

  • build "shortcuts" between context vector and source input
  • decoder can "attend" to different parts of the input at every output step
  • now each decoder output word depends on a weighted combination of all input states

\centering

\centering { height=90% }

\raggedleft \footnotesize from Chan et al.: Listen, Attend and Spell (2017)

Models in detail

Overview (Architectures)

{ height=90% }

Introduction

All of the models have in common:

  • Audio input encoded as Mel-Bank-Features

Cascaded model

\columnsbegin \column{.3\textwidth} TODO

\column{.68\textwidth}

  • traditionally used and still state of the art
  • easier to learn complex audio to text mapping
  • cannot be trained end to end
  • but: can make use of more abundant text translation and speech recognition corpi
  • propagation of error problem

\columnsend

Direct model

\columnsbegin \column{.3\textwidth} { height=80% }

\column{.68\textwidth}

\begin{equation} \begin{split} \var{s_i} &= \LSTM([\weight{W_e} \weight{y_{i-1}}\sep \var{c_{i-1}}], \var{s_{i-1}}\sep \theta_\mathnormal{lstm}) \ \var{c_i} &= \Attention([\var{s_i} \var{e}{1:L}\sep\theta{\mathnormal{att}}]) \ \var{\widetilde{s_i}} &= \tanh(\weight{W_s}[\var{s_{i}}\sep\var{c_i}] + \var{b_s}) \ & \mathit{p}(y_i \lvert y_{<i}, e_{1:L}) = \mathrm{SoftMaxOut}(\var{\widetilde{s_i}} \sep \theta_{\mathnormal{out}}) \end{split} \end{equation} \newline Variables:

  • $e_{1:L}$ $L$ audio encoder states
  • $\weight{W_}$, $\theta_{\mathnormal{}}$, $\var{b_s}$ trainable parameters
  • $y_i$ output characters

\columnsend

Direct model

\columnsbegin \column{.3\textwidth} { height=80% }

\column{.68\textwidth}

  • more recently shown
  • complex mapping from audio to text has to be learned in the model with little guidance
  • needs speech to translation datasets for training $\Rightarrow$ a lot less data available

\columnsend

Two stage model

\columnsbegin \column{.3\textwidth} { height=80% }

\column{.68\textwidth}

\begin{equation} \begin{split} \var{s^{src}i} &= \LSTM([\weight{W^{src}e} \weight{y^{src}{i-1}}\sep \var{c^{src}{i-1}}], \var{s^{src}{i-1}}\sep \theta^{src}\mathnormal{lstm}) \ \var{c^{src}i} &= \Attention([\var{s^{src}i},\var{e}{1:L}\sep\theta^{src}{\mathnormal{att}}]) \ \var{\widetilde{s}^{src}_i} &= \tanh(\weight{W^{src}s}[\var{s^{src}{i}}\sep\var{c^{src}_i}] + \var{b^{src}s}) \ & \mathit{p}(y^{src}i \lvert y{<i}, e{1:L}) = \mathrm{SoftMaxOut}(\var{\widetilde{s}^{src}i} \sep \theta^{src}{\mathnormal{out}}) \end{split} \end{equation}

\begin{equation} \begin{split} \var{s^{trg}i} &= \LSTM([\weight{W^{trg}e} \weight{y^{trg}{i-1}}\sep \var{c^{trg}{i-1}}], \var{s^{trg}{i-1}}\sep \theta^{trg}\mathnormal{lstm}) \ \var{c^{trg}i} &= \Attention([\var{s^{trg}i} \var{s}^{src}{1:N}\sep\theta^{trg}{\mathnormal{att}}]) \ \var{\widetilde{s}^{trg}_i} &= \tanh(\weight{W^{trg}s}[\var{s^{trg}{i}}\sep\var{c^{trg}_i}] + \var{b^{trg}s}) \ & \mathit{p}(y^{trg}i \lvert y{<i}, e{1:L}) = \mathrm{SoftMaxOut}(\var{\widetilde{s}^{trg}i} \sep \theta^{trg}{\mathnormal{out}}) \end{split} \end{equation}

\columnsend

Two stage model

  • two encoder-decoder stages, but decoder of first and encoder of second stage shared:
    • unlike cascaded model the second stage does not use the ASR output
    • calculates attention vectors directly on the first decoder state: \newline $\var{c^{trg}i} = \Attention([\var{s^{trg}i} \var{s}^{src}{1:N}\sep\theta^{trg}{\mathnormal{att}}])$
  • keeps end-to-end trainability
  • can also be trained with ASR and MT data

Model comparison

Attention passing model

Architecture comparision

Performance

Bleu score

Datasets

Data efficiency

Closing

Comments

  • differences in architecture might make them less comparable

Related work

References