-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcnn_models.py
253 lines (196 loc) · 5.89 KB
/
cnn_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
# coding: utf-8
"""Package including tensorflow.keras models."""
from tensorflow.keras.layers import (Concatenate, Conv1D, Dense, Flatten,
Input, MaxPooling1D, Reshape)
from tensorflow.keras.models import Model
def getKerasModel(model_name):
"""Get keras model by name.
Parameters
----------
model_name : str
Name of the respective model.
Returns
-------
Sequential keras model
Model.
"""
if model_name == "LucasCNN":
return LucasCNN()
if model_name == "HuEtAl":
return HuEtAl()
if model_name == "LiuEtAl":
return LiuEtAl()
if model_name == "LucasResNet":
return LucasResNet()
if model_name == "LucasCoordConv":
return LucasCoordConv()
print("Error: Model {0} not implemented.".format(model_name))
return None
def HuEtAl():
"""Return 1D-CNN by Wei Hu et al 2014."""
seq_length = 256
# definition by Hu et al for parameter k1 and k2
kernel_size = seq_length // 9
pool_size = int((seq_length - kernel_size + 1) / 35)
inp = Input(shape=(seq_length, 1))
# CONV1
x = Conv1D(filters=20, kernel_size=kernel_size, activation="tanh")(inp)
x = MaxPooling1D(pool_size)(x)
# Flatten, FC1, Softmax
x = Flatten()(x)
x = Dense(units=100, activation="tanh")(x)
x = Dense(4, activation="softmax")(x)
return Model(inputs=inp, outputs=x)
def LiuEtAl():
"""Return 1D-CNN by Lanfa Liu et al 2018."""
seq_length = 256
kernel_size = 3
inp = Input(shape=(seq_length, 1))
# CONV1
x = Conv1D(filters=32, kernel_size=kernel_size, activation="relu")(inp)
x = MaxPooling1D(2)(x)
# CONV2
x = Conv1D(filters=32, kernel_size=kernel_size, activation='relu')(x)
x = MaxPooling1D(2)(x)
# CONV3
x = Conv1D(filters=64, kernel_size=kernel_size, activation='relu')(x)
x = MaxPooling1D(2)(x)
# CONV4
x = Conv1D(filters=64, kernel_size=kernel_size, activation='relu')(x)
x = MaxPooling1D(2)(x)
# Flatten & Softmax
x = Flatten()(x)
x = Dense(4, activation="softmax")(x)
return Model(inputs=inp, outputs=x)
def LucasCNN():
"""Return LucasCNN implementation.
Returns
-------
Sequential keras model
Model.
"""
seq_length = 256
kernel_size = 3
activation = "relu"
padding = "valid"
inp = Input(shape=(seq_length, 1))
# CONV1
x = Conv1D(filters=32,
kernel_size=kernel_size,
activation=activation,
padding=padding)(inp)
x = MaxPooling1D(2)(x)
# CONV2
x = Conv1D(filters=32,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV3
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV4
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# Flatten, FC1, FC2, Softmax
x = Flatten()(x)
x = Dense(120, activation=activation)(x)
x = Dense(160, activation=activation)(x)
x = Dense(4, activation="softmax")(x)
return Model(inputs=inp, outputs=x)
def LucasResNet():
"""Return LucasResNet implementation.
Returns
-------
Sequential keras model
Model.
"""
seq_length = 256
kernel_size = 3
activation = "relu"
padding = "same"
inp = Input(shape=(seq_length, 1))
# CONV1
x = Conv1D(filters=32,
kernel_size=kernel_size,
activation=activation,
padding=padding)(inp)
x = MaxPooling1D(2)(x)
# CONV2
x = Conv1D(filters=32,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV3
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV4
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# Residual block
inp_res = Reshape((16, 16))(inp)
x = Concatenate(axis=-1)([x, inp_res])
# Flatten, FC1, FC2, Softmax
x = Flatten()(x)
x = Dense(150, activation=activation)(x)
x = Dense(100, activation=activation)(x)
x = Dense(4, activation="softmax")(x)
return Model(inputs=inp, outputs=x)
def LucasCoordConv():
"""Return LucasCoordConv implementation.
Returns
-------
Sequential keras model
Model.
"""
from coord import CoordinateChannel1D
seq_length = 256
kernel_size = 3
activation = "relu"
padding = "valid"
inp = Input(shape=(seq_length, 1))
# CoordCONV1
x = CoordinateChannel1D()(inp)
x = Conv1D(filters=32,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV2
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV3
x = Conv1D(filters=64,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# CONV4
x = Conv1D(filters=128,
kernel_size=kernel_size,
activation=activation,
padding=padding)(x)
x = MaxPooling1D(2)(x)
# Flatte, FC1, FC2, Softmax
x = Flatten()(x)
x = Dense(256, activation=activation)(x)
x = Dense(128, activation=activation)(x)
x = Dense(4, activation="softmax")(x)
return Model(inputs=inp, outputs=x)