-
Notifications
You must be signed in to change notification settings - Fork 1
/
mlp_policy.py
59 lines (47 loc) · 2.54 KB
/
mlp_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from baselines.common.mpi_running_mean_std import RunningMeanStd
import baselines.common.tf_util as U
import tensorflow as tf
import gym
from baselines.common.distributions import make_pdtype
class MlpPolicy(object):
recurrent = False
def __init__(self, name, *args, **kwargs):
with tf.variable_scope(name):
self._init(*args, **kwargs)
self.scope = tf.get_variable_scope().name
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
with tf.variable_scope("obfilter"):
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(U.dense(last_out, hid_size, "vffc%i"%(i+1), weight_init=U.normc_initializer(1.0)))
self.vpred = U.dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:,0]
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(U.dense(last_out, hid_size, "polfc%i"%(i+1), weight_init=U.normc_initializer(1.0)))
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
mean = U.dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
pdparam = U.concatenate([mean, mean * 0.0 + logstd], axis=1)
else:
pdparam = U.dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(pdparam)
self.state_in = []
self.state_out = []
stochastic = tf.placeholder(dtype=tf.bool, shape=())
ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
self._act = U.function([stochastic, ob], [ac, self.vpred])
def act(self, stochastic, ob):
ac1, vpred1 = self._act(stochastic, ob[None])
return ac1[0], vpred1[0]
def get_variables(self):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope)
def get_trainable_variables(self):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
def get_initial_state(self):
return []