-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_net.py
288 lines (249 loc) · 10.7 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import itertools
import weakref
from typing import Any, Dict, List, Set
import logging
from collections import OrderedDict
import torch
from fvcore.nn.precise_bn import get_bn_modules
import detectron2.utils.comm as comm
from detectron2.utils.logger import setup_logger
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch, create_ddp_model, \
AMPTrainer, SimpleTrainer, hooks
from detectron2.evaluation import COCOEvaluator, LVISEvaluator, verify_results
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.modeling import build_model
from core import DatasetMapper, add_config
from core.util.model_ema import add_model_ema_configs, may_build_model_ema, may_get_ema_checkpointer, EMAHook, \
apply_model_ema_and_restore, EMADetectionCheckpointer
from core.pascal_voc import register_pascal_voc
from core.pascal_voc_evaluation import PascalVOCDetectionEvaluator
class Register:
def __init__(self, dataset_root, split, cfg):
self.dataset_root = dataset_root
self.super_split = split.split('/')[0]
self.cfg = cfg
self.PREDEFINED_SPLITS_DATASET = {
"my_train": split,
"my_val": os.path.join(self.super_split, 'test')
}
def register_dataset(self):
"""
purpose: register all splits of datasets with PREDEFINED_SPLITS_DATASET
"""
for name, split in self.PREDEFINED_SPLITS_DATASET.items():
register_pascal_voc(name, self.dataset_root, self.super_split, split, self.cfg)
class Trainer(DefaultTrainer):
""" Extension of the Trainer class adapted """
def __init__(self, cfg):
"""
Args:
cfg (CfgNode):
"""
super(DefaultTrainer, self).__init__() # call grandfather's `__init__` while avoid father's `__init()`
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
optimizer = self.build_optimizer(cfg, model)
data_loader = self.build_train_loader(cfg)
model = create_ddp_model(model, broadcast_buffers=False)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
# EMA
kwargs = {
'trainer': weakref.proxy(self),
}
kwargs.update(may_get_ema_checkpointer(cfg, model))
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg.OUTPUT_DIR,
**kwargs,
# trainer=weakref.proxy(self),
)
self.start_iter = 0
self.max_iter = cfg.SOLVER.MAX_ITER
self.cfg = cfg
self.register_hooks(self.build_hooks())
@classmethod
def build_model(cls, cfg):
"""
Returns:
torch.nn.Module:
It now calls :func:`detectron2.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
model = build_model(cfg)
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
# setup EMA
may_build_model_ema(cfg, model)
return model
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
if 'lvis' in dataset_name:
return LVISEvaluator(dataset_name, cfg, True, output_folder)
else:
return PascalVOCDetectionEvaluator(dataset_name, cfg)
@classmethod
def build_train_loader(cls, cfg):
mapper = DatasetMapper(cfg, is_train=True)
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_optimizer(cls, cfg, model):
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for key, value in model.named_parameters(recurse=True):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
lr = cfg.SOLVER.BASE_LR
weight_decay = cfg.SOLVER.WEIGHT_DECAY
if "backbone" in key:
lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
return optimizer
@classmethod
def ema_test(cls, cfg, model, evaluators=None):
# model with ema weights
logger = logging.getLogger("detectron2.trainer")
if cfg.MODEL_EMA.ENABLED:
logger.info("Run evaluation with EMA.")
with apply_model_ema_and_restore(model):
results = cls.test(cfg, model, evaluators=evaluators)
else:
results = cls.test(cfg, model, evaluators=evaluators)
return results
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
EMAHook(self.cfg, self.model) if cfg.MODEL_EMA.ENABLED else None, # EMA hook
hooks.LRScheduler(),
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
cfg.TEST.EVAL_PERIOD,
self.model,
# Build a new data loader to not affect training
self.build_train_loader(cfg),
cfg.TEST.PRECISE_BN.NUM_ITER,
)
if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
else None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
return ret
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_config(cfg)
add_model_ema_configs(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
data_register = Register('./datasets/', args.task, cfg)
data_register.register_dataset()
if args.eval_only:
model = Trainer.build_model(cfg)
kwargs = may_get_ema_checkpointer(cfg, model)
if cfg.MODEL_EMA.ENABLED:
EMADetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
resume=args.resume)
else:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
resume=args.resume)
res = Trainer.ema_test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser0 = default_argument_parser()
parser0.add_argument("--task", default="")
args = parser0.parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)