-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathcnn_train_dag.m
705 lines (625 loc) · 22.9 KB
/
cnn_train_dag.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
function [net,stats] = cnn_train_dag_mcn2(net, imdb, getBatch, varargin)
%CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper
% CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with
% the DagNN wrapper instead of the SimpleNN wrapper.
% Copyright (C) 2014-16 Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
addpath(fullfile(vl_rootnn, 'examples'));
opts.expDir = fullfile('data','exp') ;
opts.continue = true ;
opts.batchSize = 256 ;
opts.numSubBatches = 1 ;
opts.train = [] ;
opts.val = [] ;
opts.gpus = [] ;
opts.prefetch = false ;
opts.epochSize = inf;
opts.numEpochs = 300 ;
opts.learningRate = 0.001 ;
opts.weightDecay = 0.0005 ;
opts.solver = [] ; % Empty array means use the default SGD solver
[opts, varargin] = vl_argparse(opts, varargin) ;
if ~isempty(opts.solver)
assert(isa(opts.solver, 'function_handle') && nargout(opts.solver) == 2,...
'Invalid solver; expected a function handle with two outputs.') ;
% Call without input arguments, to get default options
opts.solverOpts = opts.solver() ;
end
opts.momentum = 0.9 ;
opts.saveSolverState = true ;
opts.nesterovUpdate = false ;
opts.randomSeed = 0 ;
opts.profile = false ;
opts.parameterServer.method = 'tmove'; %'tmove' or 'mmap';
opts.parameterServer.prefix = ['matconvnet' num2str(feature('getpid'))] ;
opts.parameterServer.memoryMapFile = fullfile(tempdir, 'ramdisk', opts.parameterServer.prefix) ;
opts.derOutputs = {'objective', 1} ;
opts.extractStatsFn = @extractStats ;
opts.plotStatistics = true;
opts.postEpochFn = [] ; % postEpochFn(net,params,state) called after each epoch; can return a new learning rate, 0 to stop, [] for no change
opts.valmode = '30samples';
opts.temporalStride = 1;
opts.backpropDepth = [];
opts.numValFrames = 3;
opts.nFramesPerVid = 5;
opts.saveAllPredScores = false;
opts.denseEval = 0;
opts.cudnnWorkspaceLimit = [];
opts.plotDiagnostics = false;
opts.augmentation = '';
opts.temporalFullConvTest = true;
[opts, varargin] = vl_argparse(opts, varargin) ;
if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end
if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end
if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end
if isscalar(opts.train) && isnumeric(opts.train) && isnan(opts.train)
opts.train = [] ;
end
if isscalar(opts.val) && isnumeric(opts.val) && isnan(opts.val)
opts.val = [] ;
end
% -------------------------------------------------------------------------
% Initialization
% -------------------------------------------------------------------------
evaluateMode = isempty(opts.train) ;
if ~evaluateMode
if isempty(opts.derOutputs)
error('DEROUTPUTS must be specified when training.\n') ;
end
end
% -------------------------------------------------------------------------
% Train and validate
% -------------------------------------------------------------------------
modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep));
modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ;
start = opts.continue * findLastCheckpoint(opts.expDir) ;
if start >= 1
fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ;
[net, state, stats] = loadState(modelPath(start)) ;
else
state = [] ;
end
for epoch=start+1:opts.numEpochs
% Set the random seed based on the epoch and opts.randomSeed.
% This is important for reproducibility, including when training
% is restarted from a checkpoint.
rng(epoch + opts.randomSeed) ;
prepareGPUs(opts, epoch == start+1) ;
% Train for one epoch.
params = opts ;
params.epoch = epoch ;
params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ;
params.train = opts.train(randperm(numel(opts.train))) ; % shuffle
params.train = params.train(1:min(opts.epochSize, numel(opts.train)));
params.val = opts.val ;
params.imdb = imdb ;
params.getBatch = getBatch ;
if iscell(opts.backpropDepth)
if epoch <= numel(opts.backpropDepth)
params.backpropDepth = opts.backpropDepth{epoch};
else
params.backpropDepth = [];
end
else
params.backpropDepth = opts.backpropDepth;
end
if numel(opts.gpus) <= 1
[net, state] = processEpoch(net, state, params, 'train') ;
[net, state] = processEpoch(net, state, params, 'val') ;
if ~evaluateMode
saveState(modelPath(epoch), net, state) ;
end
lastStats = state.stats ;
else
assert(isempty(params.backpropDepth), 'Cannot use backpropDepth in multi GPU mode.')
spmd
[net, state] = processEpoch(net, state, params, 'train') ;
[net, state] = processEpoch(net, state, params, 'val') ;
if labindex == 1 && ~evaluateMode
saveState(modelPath(epoch), net, state) ;
end
lastStats = state.stats ;
end
lastStats = accumulateStats(lastStats) ;
end
stats.train(epoch) = lastStats.train ;
stats.val(epoch) = lastStats.val ;
clear lastStats ;
saveStats(modelPath(epoch), stats, opts) ;
if opts.plotStatistics
switchFigure(1) ; clf ;
values = [] ; values_loss = [] ;
leg = {} ; leg_loss = {} ;
for s = {'train', 'val'}
s = char(s) ;
for f = setdiff(fieldnames(stats.(s))', {'num', 'time','scores', 'allScores'})
f = char(f) ;
if isempty(strfind(f,'err'))
leg_loss{end+1} = sprintf('%s (%s)', f, s) ;
tmp = [stats.(s).(f)] ;
values_loss(end+1,:) = tmp(1,:)' ;
else
leg{end+1} = sprintf('%s (%s)', f, s) ;
tmp = [stats.(s).(f)] ;
values(end+1,:) = tmp(1,:)' ;
end
tmp = [stats.(s).(f)];
fprintf('%s (%s):%.3f\n', f, s, tmp(end))
end
end
if ~isempty(values_loss)
subplot(1,2,1) ; plot(1:epoch, values_loss','o-') ;
legend(leg_loss{:},'Location', 'northoutside'); xlabel('epoch') ; ylabel('objective') ;
subplot(1,2,2) ; plot(1:epoch, values','o-') ; ylim([0 1])
legend(leg{:},'Location', 'northoutside') ; xlabel('epoch') ; ylabel('error') ;
grid on ;
drawnow ;
print(1, modelFigPath, '-dpdf') ;
end
end
if ~isempty(opts.postEpochFn)
if nargout(opts.postEpochFn) == 0
opts.postEpochFn(net, params, state) ;
else
lr = opts.postEpochFn(net, params, state) ;
if ~isempty(lr), opts.learningRate = lr; end
if opts.learningRate == 0, break; end
end
end
end
% With multiple GPUs, return one copy
if isa(net, 'Composite'), net = net{1} ; end
% -------------------------------------------------------------------------
function [net, state] = processEpoch(net, state, params, mode)
% -------------------------------------------------------------------------
% Note that net is not strictly needed as an output argument as net
% is a handle class. However, this fixes some aliasing issue in the
% spmd caller.
% initialize with momentum 0
if isfield(state, 'momentum'), state.solverState = state.momentum; state.momentum = []; end
if isempty(state) || isempty(state.solverState)
state.solverState = cell(1, numel(net.params)) ;
state.solverState(:) = {0} ;
end
% move CNN to GPU as needed
numGpus = numel(params.gpus) ;
if numGpus >= 1
net.move('gpu') ;
for i = 1:numel(state.solverState)
s = state.solverState{i} ;
if isnumeric(s)
state.solverState{i} = gpuArray(s) ;
elseif isstruct(s)
state.solverState{i} = structfun(@gpuArray, s, 'UniformOutput', false) ;
end
end
end
if numGpus > 1
parserv = ParameterServer(params.parameterServer) ;
net.setParameterServer(parserv) ;
else
parserv = [] ;
end
% profile
if params.profile
if numGpus <= 1
profile clear ;
profile on ;
else
mpiprofile reset ;
mpiprofile on ;
end
end
num = 0 ;
epoch = params.epoch ;
subset = params.(mode) ;
adjustTime = 0 ;
moreopts = [];
stats.num = 0 ; % return something even if subset = []
stats.time = 0 ;
stats.scores = [] ;
stats2.err1 = 0;
stats2.err5 = 0;
net.backpropDepth = params.backpropDepth;
if ~strcmp(mode,'train')
net.mode = 'test';
dataset = ceil(params.imdb.images.set(subset(1))/2);
nClasses = numel(params.imdb.classes.name);
if nClasses < 5
nClasses = numel(params.imdb.classes.name{dataset});
end
stats2.scores = zeros(nClasses, numel(subset));
moreopts.frameSample = 'uniformly';
moreopts.augmentation = 'uniform';
moreopts.keepFramesDim = true; % make getBatch output 5 dimensional
if strcmp(params.valmode,'30samples')
% sample less frames and crops:
moreopts.numAugments = 6;
moreopts.nFramesPerVid = 5;
elseif strcmp(params.valmode,'centreSamplesFast')
% sample less frames and crops:
moreopts.numAugments = 2;
moreopts.nFramesPerVid = 3;
elseif strcmp(params.valmode,'250samples') ,
moreopts.numAugments = 10;
moreopts.nFramesPerVid = 25;
elseif strcmp(params.valmode,'dense')
moreopts.augmentation = 'none';
moreopts.numAugments = 0;
moreopts.nFramesPerVid = 25;
moreopts.keepFramesDim = true;
params.batchSize = numlabs;
params.numSubBatches = numlabs;
elseif strcmp(params.valmode,'temporalStrideRandom')
moreopts.nFrameStack = params.nFramesPerVid;
moreopts.temporalStride = ceil(median(params.temporalStride));
moreopts.temporalStride = max(params.temporalStride);
params.batchSize = 32*numlabs ;
params.numSubBatches = params.batchSize; % has to be
moreopts.nFramesPerVid = params.numValFrames;
end
if params.denseEval
moreopts.augmentation = 'none';
moreopts.numAugments = 2;
end
if params.temporalFullConvTest
params.nFramesPerVid = params.numValFrames;
end
pred_layers = [];
for l=1:numel(net.layers)
if isempty( net.layers(l).params ), continue; end;
if size(net.params(net.getParamIndex(net.layers(l).params{1})).value,4) == nClasses || ...
size(net.params(net.getParamIndex(net.layers(l).params{1})).value,5) == nClasses % 3D FC layer
pred_layers = [pred_layers net.layers(l).outputIndexes];
net.vars(net.layers(l).outputIndexes).precious = 1;
end
if isa(net.layers(l).block, 'dagnn.LSTM')
pred_layers = [pred_layers net.layers(l).outputIndexes(1)];
net.vars(net.layers(l).outputIndexes(1)).precious = 1 ;
end
end
if params.saveAllPredScores
stats2.allScores = zeros(numel(pred_layers),moreopts.numAugments* moreopts.nFramesPerVid/params.nFramesPerVid, nClasses, numel(subset));
end
else
net.mode = 'normal';
moreopts = [];
end
start = tic ;
for t=1:params.batchSize:numel(subset)
fprintf('%s: epoch %02d: %3d/%3d:', mode, epoch, ...
fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ;
batchSize = min(params.batchSize, numel(subset) - t + 1) ;
for s=1:params.numSubBatches
% get this image batch and prefetch the next
batchStart = t + (labindex-1) + (s-1) * numlabs ;
batchEnd = min(t+params.batchSize-1, numel(subset)) ;
batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ;
num = num + numel(batch) ;
if numel(batch) == 0, continue ; end
inputs = params.getBatch(params.imdb, batch, moreopts) ;
moreopts.frameList = [];
if strcmp(net.mode, 'test') && strcmp(params.valmode,'temporalStrideRandom')
for i = 2:4:numel(inputs)
sz = size(inputs{i});
inputs{i} = gather(inputs{i});
nFramesPerVid = sz(5)/moreopts.numAugments;
chunks = ceil(nFramesPerVid / params.nFramesPerVid);
inputs{i} = reshape(inputs{i}, sz(1), sz(2), sz(3), [], params.nFramesPerVid);
inputs{i} = permute(inputs{i} , [1 2 3 5 4]);
end
end
net.meta.curNumFrames = repmat(size(inputs{2},4) / numel(inputs{4}),1,numel(net.layers)); % nFrames = instances/labels
net.meta.curBatchSize = numel(batch);
inputs{end+1} = 'inputSet'; inputs{end+1} = ceil(params.imdb.images.set(batch)/2); % dataset
if params.prefetch
if s == params.numSubBatches
batchStartNext = t + (labindex-1) + params.batchSize ;
batchEndNext = min(t+2*params.batchSize-1, numel(subset)) ;
else
batchStartNext = batchStart + numlabs ; batchEndNext = batchEnd;
end
nextBatch = subset(batchStartNext : params.numSubBatches * numlabs : batchEndNext) ;
if ~isempty(nextBatch)
moreopts.frameList = params.getBatch(params.imdb, nextBatch, moreopts) ;
else
moreopts.frameList = NaN ;
end
end
if ndims(inputs{2})>4 % average over frames
dataset = inputs{end}(1);
nClasses = numel(params.imdb.classes.name);
if nClasses < 5
nClasses = numel(params.imdb.classes.name{dataset});
end
frame_predictions = cell(numel(pred_layers),size(inputs{2},5));
for fr = 1:size(inputs{2},5)
frame_inputs = inputs;
net.meta.curNumFrames = repmat(size(inputs{2},4) / numel(inputs{4}),1,numel(net.layers)); % nFrames = instances/labels
for i = 2:4:numel(inputs)
if size(frame_inputs{i},5) > 1
frame_inputs{i}=frame_inputs{i}(:,:,:,:,fr);
end
end
if strcmp(mode, 'train')
net.accumulateParamDers = (s ~= 1) ;
net.eval(frame_inputs, derOutputs) ;
else
net.eval(frame_inputs) ;
end
[frame_predictions{:,fr}] = deal(net.vars(pred_layers).value) ;
end
tmp = [];
for k = 1:numel(pred_layers)
frame_predictions(k,:)= cellfun(@(x) mean(mean(x,1),2), frame_predictions(k,:), 'UniformOutput', false);
if numel(batch) == 1
frame_predictions(k,:)= cellfun(@(x) mean(x,4), frame_predictions(k,:), 'UniformOutput', false);
end
tmp = [tmp; frame_predictions{k,:}];
end
frame_predictions = tmp;
if min(net.meta.curNumFrames) > 1
frame_predictions = mean(frame_predictions,4);
end
if params.saveAllPredScores
stats2.allScores(:,:,:,batchStart : params.numSubBatches * numlabs : batchEnd) = gather(frame_predictions);
end
% average over time (dim+1) and spatial locations and batches
frame_predictions = mean(mean(mean(frame_predictions),1),2);
[err1, err5] = error_multiclass(params, inputs{4}, gather(frame_predictions));
stats2.err1 = (stats2.err1 + err1);
stats2.err5 = (stats2.err5 + err5);
else % inputs four dimensional
if strcmp(mode, 'train')
net.mode = 'normal' ;
net.accumulateParamDers = (s ~= 1) ;
net.eval(inputs, params.derOutputs, 'holdOn', s < params.numSubBatches) ;
else
net.mode = 'test' ;
net.eval(inputs) ;
end
end
if strcmp(mode, 'val') && ndims(inputs{2})>4
stats2.scores(:, batchStart : params.numSubBatches * numlabs : batchEnd) = squeeze(gather(frame_predictions));
end
end
% Accumulate gradient.
if strcmp(mode, 'train')
if ~isempty(parserv), parserv.sync() ; end
state = accumulateGradients(net, state, params, batchSize, parserv) ;
end
% Get statistics.
time = toc(start) + adjustTime ;
batchTime = time - stats.time ;
stats.num = num ;
stats.time = time ;
stats = params.extractStatsFn(stats,net) ;
if ndims(inputs{2})>4 % average over frames
for f = fieldnames(stats2)'
f = char(f) ; stats.(f) = stats2.(f);
end
end
currentSpeed = batchSize / batchTime ;
averageSpeed = (t + batchSize - 1) / time ;
if t == 3*params.batchSize + 1
% compensate for the first three iterations, which are outliers
adjustTime = 4*batchTime - time ;
stats.time = time + adjustTime ;
end
fprintf('lr: %.0e, %.1f (%.1f) Hz',params.learningRate, averageSpeed, currentSpeed) ;
for f = setdiff(fieldnames(stats)', {'num', 'time','scores', 'allScores'})
f = char(f) ;
if ndims(inputs{2})>4 && any(strcmp(f, {'err1', 'err5'}))
n = (t + batchSize - 1) / max(1,numlabs) ;
stats.(f) = stats.(f) / n;
end
fprintf(' %s:%.3f', f, stats.(f)) ;
end
fprintf('\n') ;
% debug info
if params.plotDiagnostics && numGpus <= 1
figure(2) ; net.diagnose('Vars',1,'Params',1,'Time',1) ; drawnow ;
end
end
% Save back to state.
state.stats.(mode) = stats ;
if params.profile
if numGpus <= 1
state.prof.(mode) = profile('info') ;
profile off ;
else
state.prof.(mode) = mpiprofile('info');
mpiprofile off ;
end
end
if ~params.saveSolverState
state.solverState = [] ;
else
for i = 1:numel(state.solverState)
s = state.solverState{i} ;
if isnumeric(s)
state.solverState{i} = gather(s) ;
elseif isstruct(s)
state.solverState{i} = structfun(@gather, s, 'UniformOutput', false) ;
end
end
end
net.reset() ;
net.move('cpu') ;
% -------------------------------------------------------------------------
function state = accumulateGradients(net, state, params, batchSize, parserv)
% -------------------------------------------------------------------------
numGpus = numel(params.gpus) ;
otherGpus = setdiff(1:numGpus, labindex) ;
for p=1:numel(net.params)
if ~isempty(parserv)
parDer = parserv.pullWithIndex(p) ;
else
parDer = net.params(p).der ;
end
if isempty(parDer)
% fprintf('empty param for: %s\n', net.params(p).name) ;
continue;
end
switch net.params(p).trainMethod
case 'average' % mainly for batch normalization
thisLR = net.params(p).learningRate ;
net.params(p).value = vl_taccum(...
1 - thisLR, net.params(p).value, ...
(thisLR/batchSize/net.params(p).fanout), parDer) ;
case 'gradient'
thisDecay = params.weightDecay * net.params(p).weightDecay ;
thisLR = params.learningRate * net.params(p).learningRate ;
if thisLR>0 || thisDecay>0
% Normalize gradient and incorporate weight decay.
parDer = vl_taccum(1/batchSize, parDer, ...
thisDecay, net.params(p).value) ;
if isempty(params.solver)
% Default solver is the optimised SGD.
% Update momentum.
state.solverState{p} = vl_taccum(...
params.momentum, state.solverState{p}, ...
-1, parDer) ;
% Nesterov update (aka one step ahead).
if params.nesterovUpdate
delta = params.momentum * state.solverState{p} - parDer ;
else
delta = state.solverState{p} ;
end
% Update parameters.
net.params(p).value = vl_taccum(...
1, net.params(p).value, thisLR, delta) ;
else
% call solver function to update weights
[net.params(p).value, state.solverState{p}] = ...
params.solver(net.params(p).value, state.solverState{p}, ...
parDer, params.solverOpts, thisLR) ;
end
end
otherwise
error('Unknown training method ''%s'' for parameter ''%s''.', ...
net.params(p).trainMethod, ...
net.params(p).name) ;
end
end
% -------------------------------------------------------------------------
function stats = accumulateStats(stats_)
% -------------------------------------------------------------------------
for s = {'train', 'val'}
s = char(s) ;
total = 0 ;
% initialize stats stucture with same fields and same order as
% stats_{1}
stats__ = stats_{1} ;
names = fieldnames(stats__.(s))' ;
values = zeros(1, numel(names)) ;
fields = cat(1, names, num2cell(values)) ;
stats.(s) = struct(fields{:}) ;
for g = 1:numel(stats_)
stats__ = stats_{g} ;
num__ = stats__.(s).num ;
total = total + num__ ;
for f = setdiff(fieldnames(stats__.(s))', 'num')
f = char(f) ;
stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ;
if g == numel(stats_)
stats.(s).(f) = stats.(s).(f) / total ;
end
end
end
stats.(s).num = total ;
end
% -------------------------------------------------------------------------
function stats = extractStats(stats, net)
% -------------------------------------------------------------------------
sel = find(cellfun(@(x) isa(x,'dagnn.Loss')||isa(x,'dagnn.Loss'), {net.layers.block})) ;
for i = 1:numel(sel)
if net.layers(sel(i)).block.ignoreAverage, continue; end
stats.(net.layers(sel(i)).name) = net.layers(sel(i)).block.average ;
end
% -------------------------------------------------------------------------
function saveState(fileName, net_, state)
% -------------------------------------------------------------------------
net = net_.saveobj() ;
state.stats = [];
save(fileName, 'net', 'state') ;
% -------------------------------------------------------------------------
function saveStats(fileName, stats, opts)
% -------------------------------------------------------------------------
if exist(fileName)
save(fileName, 'stats', 'opts', '-append') ;
else
save(fileName, 'stats', 'opts') ;
end
% -------------------------------------------------------------------------
function [net, state, stats] = loadState(fileName)
% -------------------------------------------------------------------------
state = [];
load(fileName, 'net', 'state', 'stats') ;
net = dagnn.DagNN.loadobj(net) ;
if isempty(whos('stats'))
if isfield(state, 'stats')
stats = state.stats;
else
error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ...
fileName) ;
end
end
% -------------------------------------------------------------------------
function epoch = findLastCheckpoint(modelDir)
% -------------------------------------------------------------------------
list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ;
tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ;
epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ;
epoch = max([epoch 0]) ;
% -------------------------------------------------------------------------
function switchFigure(n)
% -------------------------------------------------------------------------
if get(0,'CurrentFigure') ~= n
try
set(0,'CurrentFigure',n) ;
catch
figure(n) ;
end
end
% -------------------------------------------------------------------------
function clearMex()
% -------------------------------------------------------------------------
clear vl_tmove vl_imreadjpeg ;
% -------------------------------------------------------------------------
function prepareGPUs(opts, cold)
% -------------------------------------------------------------------------
numGpus = numel(opts.gpus) ;
if numGpus > 1
% check parallel pool integrity as it could have timed out
pool = gcp('nocreate') ;
if ~isempty(pool) && pool.NumWorkers ~= numGpus
delete(pool) ;
end
pool = gcp('nocreate') ;
if isempty(pool)
parpool('local', numGpus) ;
cold = true ;
end
end
if numGpus >= 1 && cold
fprintf('%s: resetting GPU\n', mfilename)
clearMex() ;
if numGpus == 1
gpuDevice(opts.gpus)
else
spmd
clearMex() ;
gpuDevice(opts.gpus(labindex))
end
end
end
function [err1, err5] = error_multiclass(opts, labels, predictions)
% -------------------------------------------------------------------------
[~,predictions] = sort(predictions, 3, 'descend') ;
error = ~bsxfun(@eq, predictions, reshape(labels, 1, 1, 1, [])) ;
err1 = sum(sum(sum(error(:,:,1,:)))) ;
err5 = sum(sum(sum(min(error(:,:,1:5,:),[],3)))) ;