-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
212 lines (171 loc) · 8.72 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import random
import numpy as np
import torch
from torch import distributed
from torch.utils import data
from torch.utils.data.distributed import DistributedSampler
import argparser
import utils
from dataset import get_dataset
from metrics import StreamSegMetrics
from train import Trainer
from utils.logger import WandBLogger
def save_ckpt(path, trainer, epoch, best_score):
""" save current model
"""
state = {
"epoch": epoch,
"model_state": trainer.model.state_dict(),
"optimizer_state": trainer.optimizer.state_dict(),
"scheduler_state": trainer.scheduler.state_dict(),
"scaler": trainer.scaler.state_dict(),
"best_score": best_score,
}
torch.save(state, path)
def main(opts):
distributed.init_process_group(backend='nccl', init_method='env://')
device_id, device = opts.local_rank, torch.device(opts.local_rank)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
torch.cuda.set_device(device_id)
opts.device_id = device_id
# Initialize logging
task_name = f"{opts.dataset}-{opts.task}"
if opts.overlap and opts.dataset == 'voc':
task_name += "-ov"
logdir_full = f"{opts.logdir}/{task_name}/{opts.name}/"
logger = WandBLogger(logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize, step=opts.step,
name=f"{task_name}_{opts.name}")
ckpt_path = f"checkpoints/step/{task_name}/{opts.name}_{opts.step}.pth"
if not os.path.exists(f"checkpoints/step/{task_name}"):
os.makedirs(f"checkpoints/step/{task_name}")
logger.print(f"Device: {device}")
# Set up random seed
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# xxx Set up dataloader
train_dst, val_dst, test_dst, labels, n_classes = get_dataset(opts)
# reset the seed, this revert changes in random seed
random.seed(opts.random_seed)
opts.batch_size = opts.batch_size // world_size # MAKE sure it is evenly divisible
train_loader = data.DataLoader(train_dst, batch_size=opts.batch_size,
sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers, drop_last=True)
val_loader = data.DataLoader(val_dst, batch_size=opts.batch_size if opts.crop_val else 1, shuffle=False,
sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers)
logger.info(f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, Val set: {len(val_dst)},"
f" Test set: {len(test_dst)}, n_classes {n_classes}")
logger.info(f"Total batch size is {opts.batch_size * world_size}")
opts.max_iters = opts.epochs * len(train_loader)
# xxx Set up Trainer
# instance trainer (model must have already the previous step weights)
trainer = Trainer(logger, device=device, opts=opts)
# xxx Load old model from old weights if step > 0!
if opts.step > 0:
# get model path
if opts.step_ckpt is not None:
path = opts.step_ckpt
else:
path = f"checkpoints/step/{task_name}/{opts.name}_{opts.step - 1}.pth"
trainer.load_step_ckpt(path)
# Load training checkpoint if any
if opts.continue_ckpt:
opts.ckpt = ckpt_path
if opts.ckpt is not None:
cur_epoch, best_score = trainer.load_ckpt(ckpt_path)
else:
logger.info("[!] Start from epoch 0")
cur_epoch = 0
best_score = 0.
# xxx Train procedure
# print opts before starting training to log all parameters
logger.add_config(opts)
if rank == 0 and opts.sample_num > 0:
sample_ids = np.random.choice(len(val_loader), opts.sample_num, replace=False) # sample idxs for visualization
logger.info(f"The samples id are {sample_ids}")
else:
sample_ids = None
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # de-normalization for original images
TRAIN = not opts.test
val_metrics = StreamSegMetrics(n_classes)
# check if random is equal here.
logger.print(torch.randint(0, 100, (1, 1)))
# train/val here
if TRAIN:
trainer.before(train_loader=train_loader, logger=logger)
while cur_epoch < opts.epochs and TRAIN:
# ===== Train =====
epoch_loss = trainer.train(cur_epoch=cur_epoch, train_loader=train_loader)
logger.info(f"End of Epoch {cur_epoch}/{opts.epochs}, Average Loss={epoch_loss[0] + epoch_loss[1]},"
f" Class Loss={epoch_loss[0]}, Reg Loss={epoch_loss[1]}")
# ===== Log metrics on Tensorboard =====
logger.add_scalar("Train/Tot", epoch_loss[0] + epoch_loss[1], cur_epoch)
logger.add_scalar("Train/Reg", epoch_loss[1], cur_epoch)
logger.add_scalar("Train/Cls", epoch_loss[0], cur_epoch)
# ===== Validation =====
if (cur_epoch + 1) % opts.val_interval == 0:
logger.info("validate on val set...")
val_score, ret_samples = trainer.validate(loader=val_loader, metrics=val_metrics,
ret_samples_ids=sample_ids)
logger.info(val_metrics.to_str(val_score))
# ===== Save Best Model =====
if rank == 0: # save best model at the last iteration
score = val_score['Mean IoU']
# best model to build incremental steps
save_ckpt(ckpt_path, trainer, cur_epoch, score)
logger.info("[!] Checkpoint saved.")
# ===== Log metrics on Tensorboard =====
# visualize validation score and samples
logger.add_scalar("Val/Overall_Acc", val_score['Overall Acc'], cur_epoch)
logger.add_scalar("Val/MeanAcc", val_score['Agg'][1], cur_epoch)
logger.add_scalar("Val/MeanPrec", val_score['Agg'][2], cur_epoch)
logger.add_scalar("Val/MeanIoU", val_score['Mean IoU'], cur_epoch)
logger.add_table("Val/Class_IoU", val_score['Class IoU'], cur_epoch)
logger.add_table("Val/Acc_IoU", val_score['Class Acc'], cur_epoch)
logger.add_figure("Val/Confusion_Matrix", val_score['Confusion Matrix'], cur_epoch)
for k, (img, target, lbl) in enumerate(ret_samples):
img = (denorm(img) * 255).astype(np.uint8)
target = label2color(target).transpose(2, 0, 1).astype(np.uint8)
lbl = label2color(lbl).transpose(2, 0, 1).astype(np.uint8)
concat_img = np.concatenate((img, target, lbl), axis=2) # concat along width
logger.add_image(f'Sample/{k}', concat_img, cur_epoch)
logger.print("Done validation")
logger.info(f"End of Validation {cur_epoch}/{opts.epochs}")
logger.commit()
cur_epoch += 1
# ===== Save Best Model at the end of training =====
if rank == 0 and TRAIN: # save best model at the last iteration
# best model to build incremental steps
save_ckpt(ckpt_path, trainer, cur_epoch, best_score)
logger.info("[!] Checkpoint saved.")
torch.distributed.barrier()
# xxx From here starts the test code
logger.info("*** Test the model on all seen classes...")
# make data loader
test_loader = data.DataLoader(test_dst, batch_size=opts.batch_size, shuffle=False,
sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers)
val_score, _ = trainer.validate(loader=test_loader, metrics=val_metrics)
logger.info(f"*** End of Test")
logger.info(val_metrics.to_str(val_score))
logger.add_table("Test/Class_IoU", val_score['Class IoU'])
logger.add_table("Test/Class_Acc", val_score['Class Acc'])
logger.add_figure("Test/Confusion_Matrix", val_score['Confusion Matrix'])
logger.add_scalar("Test/Overall_Acc", val_score['Overall Acc'], opts.step)
logger.add_scalar("Test/MeanIoU", val_score['Mean IoU'], opts.step)
logger.add_scalar("Test/MeanAcc", val_score['Mean Acc'], opts.step)
logger.commit()
logger.log_results(task=task_name, name=opts.name, results=val_score['Class IoU'].values())
logger.log_aggregates(task=task_name, name=opts.name, results=val_score['Agg'])
logger.close()
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
os.makedirs("checkpoints/step", exist_ok=True)
main(opts)