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1 Implementation details
1.1 Training protocol

In this section, we provide additional details on the training protocol used in our experiments.
Note that we adopt the same protocol for all the methods, to ensure a fair comparison.

When fine-tuning we follow [3], using SGD as optimizer with momentum 0.9, weight
decay 10~* and a polynomial learning rate policy, i.e. Ir = Irjp (1 — mai;eriter)OQ. During train-
ing, we apply the same data augmentation of [3], performing random scaling and horizontal
flipping, with a crop-size of 512 x 512. While the previous hyperparameters are shared
across settings, we use a different learning rate and number of training iterations depending
on the dataset, number of shots and learning steps. In particular, in the base step we train
the network for 30 epochs on Pascal-VOC and 20 epochs on COCO using learning rate 102
and batch size 24. For the FSL step t, we set the batch size to min(10,|D;|). In the FSL
steps of VOC-SS, we train for 1000 iterations with learning rate 1073, and for 200 iterations
per step for VOC-MS, with learning rate 10, On COCO FSL steps we use a learning rate
1073, training the model for 2000 iterations on COCO-SS, and 100 iterations on every step
of COCO-MS. These training hyperparameters are shared by all methods.

1.2 Adapting baselines to iF'SS and hyperparameters choice

In this section, we describe how we adapt the baselines reported in the main paper to iFSS
and the value of their hyperparameters. We set the hyperparameters specific of each approach
in the VOC-SS and COCO-SS 1-shot settings, using the first split of each dataset (i.e. 5-0
for VOC, and 20-0 for COCO) and maintaining the same values across all other shots, splits
and number of learning steps.

For Weight Imprinting (WI), we adapted the work of [10] from image classification. In
particular, we replaced the image-level feature extractor of [10] with masked average pooling
(MAP), as described in Sec. 4.1 of the paper. This method does not require additional hyper-
parameters, and we initialize the prototypes for new classes while keeping the prototypes of
old ones unaltered.
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split | classes

5-0 | aeroplane, bicycle, bird, boat, bottle

5-1 bus, car, cat, chair, cow

5-2 | table, dog, horse, motorbike, person

5-3 | plant, sheep, sofa, train, tv-monitor
Table 1: Pascal-VOC class split.

Similarly, for Dynamic Weight Imprinting [4] (DWI), we implemented the classifier us-
ing the same attention mechanism and weight generator of [4], but we replaced the class-
specific image-level features with the ones extracted through MAP. DWI uses a second meta-
learning training stage on the base classes to refine the weight generator. We performed this
step for 1000 iterations, with learning rate 1.0 and batch size 8, aggregating the gradient of
2 training episodes, as in [4]. After the meta learning stage, the method includes new classes
in the FSL steps by weight imprinting, that we implemented with MAP, as for WI.

Rethinking FSL [14] (RT), refines the model during the base step by using self-distillation
and fine-tunes the classifier on the FSL step. In particular, after the base step a copy of the
model is stored and provides the target of the self-distillation loss, to the current model. This
training phase uses the same hyperparameters of the base one. We stopped after one addi-
tional training round because we did not see clear improvements using more rounds at the
expense of a longer training time. For iFSS, we applied the self-distillation loss pixel-wise.
For the FSL steps, we trained the classifier for new classes starting from random weights and
freezing the rest of the network. We multiplied the learning rate by 10 w.r.t. the Sec 1.1 on
the FSL step, since this improved the performance on both datasets.

Adaptive Masked Proxies [13] (AMP) has been implemented following details in [13]
uses a standard linear classification layer and, an L2-normalized MAP features as classifier
for the new classes. We adapted AMP to work on both old and new classes using all the
available annotations in the FSL dataset. In particular, as proposed by [13] for continuous
segmentation, we update the classifier weights for all the old classes appearing in the new
dataset by computing a moving average with update rate oc = 0.25.

For Semantic Projection Network [16] (SPN) we follow the implementation provided by
the authors, using the combination of word2vec [8] and fastText [5] as class embeddings,
using them direclty as classifier weights. The method has no specific hyperparameters and
we adapt it to iFSS by not retaining the old datasets in the learning steps.

We implemented the three incremental learning methods, Learning without Forgetting
[6] (LwWF), Incremental Learning Techniques [7] (ILT), and Modeling the Background [1]
(MiB), following the code provided by [1]. As regularizer, LWF and ILT apply a standard
cross-entropy loss using the old network predictions as target, and ILT imposes an additional
L2 constraint on the output of the backbone (i.e. the Resnet-101). MiB uses the revised
cross-entropy and distillation losses as well as the classifier weights initialization for new
classes. The weight of the distillation losses is 100 for LwF, 100 on both the L2 and the
cross-entropy for ILT, and 10 for MiB.

Finally, for our model we set A to 10 for all settings. We recall that for all the baseline
we report in the paper, we used the same training protocol and architectures of PIFS.

1.3 Dataset class splits

We split both Pascal-VOC and COCO in 4 folds, following previous works in semantic
segmentation [9, 11, 12, 15, 17]. Table 1 reports the detailed class folds for Pascal-VOC,
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split classes
20-0 person, airplane, boat, parking meter, dog, ele-
phant, backpack, suitcase, sports ball, skate-
board, wine glass, spoon, sandwich, hot dog,
chair, dining table, mouse, microwave, refrig-
erator, scissors
20-1 bicycle, bus, traffic light, bench, horse, bear,
umbrella, frisbee, kite, surfboard, cup, bowl,
orange, pizza, couch, toilet, remote, oven,
book, teddy bear
20-2 car, train, fire hydrant, bird, sheep, zebra,
handbag, skis, baseball bat, tennis racket, fork,
banana, broccoli, donut, potted plant, tv, key-
board, toaster, clock, hair drier
20-3 motorcycle, truck, stop sign, cat, cow, giraffe,
tie, snowboard, baseball glove, bottle, knife,
apple, carrot, cake, bed, laptop, cell phone,
sink, vase, toothbrush

Table 2: COCO class split.

taken from [12], and Table 2 the ones for the COCO dataset, taken from [9].

2 Influence of old classes annotations in iFSS

The few-shot learning steps (FSL) in our benchmark consider a dataset with 1, 2, or 5 images
for each new class, randomly sampled from the set of images containing at least one pixel of
that class, but without imposing any constraint about the presence of old classes. However,
differently from [1], the few-shot datasets provide annotation for all available pixels, both for
new and old classes. In this section, we first analyze the frequency with which old classes
appears in few-shot learning steps, showing that they co-occurs rarely with new classes.
Then, we compare the results of the settings using (non-strict IL) and not using (strict IL)
old classes annotations.

2.1 Frequency of old classes in few-shot learning datasets

Fig.1 reports the percentage of images per old class averaged on all folds of the 5-shot set-
tings. From the figure, we note that old classes rarely co-occur when learning new classes:
the median is 1.56% of images per old class on VOC and 2.1% on COCO. The only excep-
tion is the person class that frequently appears in the few-shot dataset: in 32% of images
in VOC and in 52% in COCO. Moreover, we note that many classes never appear with new
classes, both in VOC, such as classes 4 (boat) and 10 (cow), and in COCO, e.g. classes 22
(bear) and 23 (zebra).

2.2 Comparison between iFSS in strict and non-strict settings

Tab. 3 reports the comparison among the strict and non-strict setting of some indicative
methods, FT, WI [10], SPN [16], MIB [1] and PIFS, evaluating the impact of the background
shift on them. We also report PIFS*, which uses the revised classification loss proposed
by MIB [1] to deal with the background shift. First, we note that WI obtains the same
results in the two settings since it is not affected by the annotation on old classes and it
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Figure 1: Percentage of images containing the old class in the 5-shot setting datasets. We
note that class person has class-ID 15 on VOC and 1 on COCO. The red line represents the
median over all classes.

VOC-SS COCO-S8
1-shot 2-shot S-shot 1-shot 2-shot S-shot

Method ‘Slrict mloU-B mIoU-N HM | mloU-B mIoU-N HM | mIoU-B mloU-N HM || mloU-B mIoU-N HM‘mIoU—B mloU-N HM‘mIoU—B mloU-N HM
FT 582 97 166] 591 196 295| 558 295 386 412 41 75 415 73 124 416 123 190
FT | v | 550 102 172| 555 192 285| 437 268 332 353 45 80| 328 74 121] 269 1L1 157
WI[10] 626 154 248] 632 192 294| 632 217 323| 438 69 119 442 79 135 436 87 146
WI[I0] | v | 626 154 248 632 192 294| 632 217 323| 438 69 119] 442 79 135] 436 87 146
SPN [16] 598 163 256| 607 263 367| 583 334 424| 435 67 117 437 102 165 437 156 229
SPN[I6]| v | 563 164 254| 570 253 351| 486 302 373| 38.1 70 118] 370 104 163] 332 151 208
MIB [1] 610 52 96| 635 126 21.1| 649 281 392| 438 35 65 444 60 106 447 119 188
MIB[I] | v | 610 60 110| 635 137 225| 649 294 404| 437 42 77| 442 71 123| 444 138 211
PIFS 608 185 284| 605 263 367 600 332 428 408 82 136 409 1Ll 175 428 157 230
PIFS | v | 591 182 279 588 261 362| 572 325 415| 349 89 142| 346 117 174] 326 156 211
PIFS* | v | 603 180 277| 603 263 366 595  33.0 4245‘ 388 88 144] 392 118 181| 384 161 226

Table 3: Performance in strict and non-strict incremental learning on single-step settings. In
bold-red the best method in strict-IL scenario. In bold-blue, the best method in non strict-IL.
PIFS* uses the revised classification loss proposed by MIB [1].

only uses new classes’ pixels for generating the classifier weights. Differently, FT and SPN,
suffer the background shift, as indicated by the large decrease in mloU-B on all setting.
MIB, being designed to solve deal with the background shift, even improves its performance,
obtaining similar results in mIloU-B and improving its performance on mloU-N. Finally, we
note that PIFS is robust to the background shift on VOC but it decrease in performance on
mloU-B on COCO. Moreover, it obtains outstanding performance on new classes, constantly
outperforming the competitors on mloU-N. Introducing the cross-entropy loss of MiB [1] in
PIFS, it notably improves the results on old classes, alleviating the background shift. We
remark that introducing the loss of [1] is straightforward, since the choice of classification
loss is independent from the prototype-learning and the distillation loss of PIFS.

3 Additional results
3.1 Detailed results step-by-step

We report the results for every incremental step on the VOC-MS and COCO-MS settings in
Fig. 2. For every incremental step, we report the harmonic mean (HM) between the mloU
on base (C°) and new (C"\C?) classes.

From the results, we note that fine-tuning (orange), RT [2] (green, circle), and incremen-
tal learning methods [1, 6, 7] (blue) obtain the worst performance on all settings. We argue
that this is due to: i) not exploiting prototype learning, failing to correctly initialize and rep-
resent the new classes, and ii) not dealing with the non-i.i.d. data, as demonstrated by the
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Figure 2: iFSS results on the sequential addition of new class. Every column is a new step.

poor performances obtained on VOC when few images are provided (1- and 2-shot settings).
On the other hand, methods that perform prototype learning, such as few-shot classification
methods [4, 10] (green) and AMP [13] (yellow, square), show a better trade-off between
learning and forgetting. In particular, WI [10] and DWI [4] achieve good performance on
VOC, being close to PIFS (red) especially on the 1-shot setting. However, we note that on
VOC 5-shot and COCO, PIFS obtains better performances since it fine-tunes the network on
the few-shot data, obtaining a better representation while avoiding overfitting. AMP [13],
differently, is outperformed by PIFS, remarking that it is essential to update the network
representation and not only the prototypes during the FSL steps. Finally, SPN [16] (yellow,
triangle) achieves good performance on the initial steps of COCO-MS 2- and 5-shot settings,
even surpassing PIFS. However, after only one (5-shot) or two (2-shot) learning steps its
performances degrade and it is surpassed by PIFS. This demonstrates that PIFS improves
the representation for new class pixels while better dealing with forgetting and non-i.i.d.
data, even without using external knowledge. Overall, PIFS is consistently the best on every
dataset and shot.

3.2 Detailed results for each split

Due to space constraints, in the main paper we report the average results across the 4 splits of
classes of each dataset. Here, we report the detailed results in all folds separately, measuring
them as the mloU on base (mloU-B) and new (mloU-N) classes, and their harmonic mean
(HM).
Pascal VOC. We report the results for Pascal-VOC with only one few-shot learning step
(VOC-SS) on Tab. 5 for 1-shot, on Tab. 6 for 2-shot, and on Tab. 7 for 5-shot. The results
on each fold are consistent with their average. PIFS is effective on all the VOC folds, being
always the best on 1-shot, and always the best or second best on 2-shot scenario, in terms
of HM. Moreover, we note that SPN is the second best on both 2-shot and 5-shot scenarios,
on all folds. On 5-shot scenario incremental learning methods become competitive to PIFS,
being ILT the best on 5-0 (+1.7% HM w.r.t. PIFS) and LWF on 5-1 (+3.4% HM w.r.t. PIES).
However the improvement of these methods is not consistent in other folds (e.g. 5-3, where
PIFS improves ILT of 5.1% in HM), obtaining an average performance lower than PIFS.
Tables 8, 9, and 10 report the results (averaged per FSL step) for the multi step scenario
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(VOC-MS), for the 1, 2, and 5 shot respectively. We remark that this setting is particularly
challenging since methods are provided only with 1, 2 or 5 images of the same class to train,
resulting in very unbalanced and non-i.i.d set. In this setting, PIFS obtains the best results
on 5-1, 5-2, and 5-3, in both 1, 2, and 5-shot setting, achieving the second best results on
5-0 on 2 and 5-shot. We note that methods obtaining excellent performance on VOC-SS
struggle on this scenario. In particular, SPN performances are lower than PIFS of 15% HM
on average, while incremental learning methods are not able to learn new classes properly,
performing close to standard fine-tuning. On the other hand, DWI and WI are effective on
this scenario, since they can integrate new classes without forgetting previous knowledge.
DWTI is the second best method on both 1, 2, and 5-shot, being the best on the 5-0 fold.
However, PIFS still outperforms it by 0.5% HM on 1-shot, 2.1% HM on 2-shot, and 1.7%
HM on 5-shot.

COCO. The results for COCO-SS are reported on tables 11 (1-shot), 12 (2-shot), and 13 (5-
shots). From the tables we can see that PIFS is consistently best or second best on every shot
and fold. It achieves nearly 1% HM more than the second best method in 1-shot (13.6% w.r.t.
DWI 12.8%) and in 2-shot (17.5% w.r.t. SPN 16.5%). Differently, on 5-shot SPN achieves
comparable performance to PIFS, i.e. 22.9% vs 23.0 HM. From the detailed results on the
folds we can see that while SPN obtains better results on 20-0 and 20-1 (+1.0% HM and
+0.3% HM respectively), PIFS outperforms it on 20-2 and 20-3 (+0.5% and +1.3% HM).

Finally, we report the results for COCO-MS on tables 14 (1-shot), 15 (2-shot), and 16
(5-shot). Also in this setting PIFS is always the best or second best method across all shots
and folds. In particular, it is the best on 1-shot on every fold, outperforming the second best
method (DWI) by 1.3% HM on average. On the 2-shot setting, PIFS is the best on 20-0
(+1.8% HM w.r.t. SPN) and 20-1 (4+1.2% HM w.r.t. RT) folds, being second best on 20-2
(—1.2% HM w.r.t. SPN) and 20-3 (—0.8% HM w.r.t. SPN). Overall, PIFS outperforms the
second best method, SPN, by 0.6% HM. In the 5-shot setting, the performance of PIFS and
SPN are on par, achieving very similar results for both old and new classes. In particular,
comparing them on the different folds, we see that they maintain very close performances,
i.e. in terms of HM, 22.9% vs 23.3% on 20-0, 22.3% vs 21.5% on 20-1, 26.4% vs 26.5% on
20-2, 29.5% vs 29.4% on 20-3, respectively for PIFS and SPN.

3.3 Prototype learning offline performance

An open question from our results is whether prototype learning in the base step hampers
the performance of the pretrained segmentation network. Ideally, we would like the model
to retain the performance of a standard semantic segmentation model when trained offline,
while keeping the advantage of prototype learning for the FSL steps.

In this section, we show that prototype learning performs on par to other learning tech-
niques in a standard offline setting, i.e. when all the classes are learned in one step. To
demonstrate this, in Tab. 4 we report the results for a linear classifier trained with cross-
entropy (std), SPN [16], and PIFS on the base step of COCO. From the results we can see
that our model is competitive with both choices, achieving an average mloU of 52.1% vs
53.0% of SPN and 52.9% of standard training. Note that while PIFS performs comparably
to other approaches in the offline scenario, the improvement on the incremental few-shot
learning settings is remarkable, as demonstrated in previous experiments.

3.4 Additional qualitative results

Due to space constraints, in the paper we report only the qualitative results for VOC-SS 1-
shot. Here, we expand the analysis by reporting the results for other scenarios, i.e. COCO-SS
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Method | Mean || 20-0 | 20-1 | 20-2 | 20-3

std 529 || 49.8 | 52.6 | 55.1 | 54.2
SPN [16] | 53.0 || 49.5 | 53.2 | 54.7 | 54.6
PIFS 52.1 479 | 51.6 | 544 | 543

Table 4: mIoU on base classes, before the few-shot steps, comparing the Prototype Learning
(PIFS) with a standard classifier (std) and SPN [16] on the COCO dataset.

Mean 5-0 5-1 5-2 5-3
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM
FT 58.3 97 16.7]| 619 32 6.1 55.2 163 252 53.6 131 21.1] 624 6.3 11.5

WI[10] 62.7 155 248| 66.5 105 18.1| 58.9 21.9 319| 586 153 242 66.7 142 235
8DWI[4] 64.3 154 248| 673 103 17.9] 59.9 233  33.5| 60.0 16.0 253 | 69.9 1.8 202

RT [14] 59.1 12.1 201 62.7 3.8 7.1 54.5 187 279| 563 146 232| 63.1 114 193
A AMP [13]| 575 16.7 258| 617 120 20.1| 498 229 314 5438 153 239| 635 16.5 26.1
& SPN [16] 59.8 163 256| 64.1 9.0 158] 56.2 239 335| 562 193 28.7| 62.7 13.1  21.7

LwF [6] 61.5 107 182 63.7 2.8 53| 59.0 193 29.0| 59.1 141 228| 64.0 66 119
= ILT [7] 64.3 13.6 225 67.1 59 10.8| 60.5 193 292 612 189 289 | 684 103 18.0
MiB [1] 61.0 52 9.7 64.6 3.1 6.0 | 569 76 134| 573 6.3 114| 654 3.9 7.4
PIFS 60.9 18.6 28.4| 644 127 21.2] 543 25.1 343 57.1 203 299 | 676 162  26.1

Table 5: iFSS: VOC-SS 1-shot.

1-shot, COCO-SS 2-shot and VOC-SS 2-shot.

Fig. 3 shows some qualitative results for different methods on COCO-SS 1-shot. From
the figure, we can see how PIFS better discriminates the new class w.r.t. other approaches.
Overall, we see that WI and DWI tend to assign pixels to new classes even when they are
outside the class of interest (e.g. dog second row, wc, fourth row), while ILT and SPN may
either ignore pixels of new classes (e.g. surfboard third row) or assign them to old ones (e.g.
elephant first row). On the other hand, PIFS correctly segments both old and new classes,
even in images with clutter (e.g. surfboard third row), multiple instances (e.g. sheep last row)
and complex boundaries (e.g. dog second row).

In Fig. 4 and Fig. 5 we show results for the VOC-SS and COCO-SS 2-shot settings. Sim-
ilarly to VOC-SS 1-shot and COCO-SS 1-shot, non-finetuned methods (WI, DWI) may not
discriminate new classes, when they are similar to base ones, making incoherent predictions.
Examples are cow and bus (first and second rows of Fig. 4) mistakenly segmented as horse
(purple) and train (light-green) respectively, and giraffe (fifth row of Fig. 5) segmented as
zebra (blue). SPN and ILT may not properly learn to segment new classes when trained with
few complex examples. For instance, both methods fail to segment motorcycle (third row
Fig. 4) and sofa (Fig. 5, fourth row), where training images are either small and in cluttered
environments (e.g. motorcycle) or mixed with other classes (e.g. dogs in sofa). In contrast,
PIFS precisely segments new classes, discriminating them from old ones. For instance, our
model correctly segments the multiple instances of motorcycle and sheep (last row) in Fig. 4,
while separating pixels of cat and dog from the new class sofa in Fig. 5. Interestingly, PIFS
can correctly discriminate almost all pixels of the new classes (e.g. cow, second row of Fig. 4,
bear and sandwich in Fig. 5 second and third rows), despite their similarities (e.g. cow with
horse) or large difference (e.g. bear) with old ones, or the presence of multiple other classes
(e.g. sandwich).
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Mean 50 5.1 52 53
Method |mloU-B mloU-N HM ||mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM | mloU-B mloU-N HM
FT 501 197 295 617 126 209| 575 310 403| 548 202 295| 625 150 242
WI[I0] | 633 192 295]|| 671 131 219| 3590 282 382| 593 181 27.7| 677 175 278

PDWIH | 648 198 304| 682 151 247| 604 309 409| 604 172 268| 701 162 263
RT[14] | 609 216 319| 653 104 180| 544 346 423| 502 243 345| 647 170 270

© AMP[I3]| 544 188 270 597 125 20| 445 284 347| 3534 172 260| 398 170 265

2 spNT16] | 608 263 367 | 655 188  292| 57.1 374 452 578 256 355| 62.7 234 341
LwF[6] | 636 189 292 652 108 186| 61.8 313 41.6| 609 210 31.3| 665 126 212

SILT(7] | 642 231 340 684 161 26| 583 337 427| 611 256 361| 689 171 274
MiB[1] | 635 127 211] 666 123 207| 60. 183 280| 597 112 188| 677 90 158
PIFS 605 264 368 640 180 20.1| 539 366 436| 582 265 364| 659 236 347

Table 6: iFSS: VOC-SS 2-shot.
Mean 5-0 5-1 5-2 5-3
Method | mloU-B mloU-N HM ||mloU-B mIoU-N HM |mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM
FT 558 206 38| 584 228 328| 523 427 470] 506 297 375| 620 230 336
WITI0] | 633 217 323| 675 163 263| 587 308 404| 35904 213 314| 675 184 289

PDWI4] | 649 235 345| 688 207 31.8| 608 347 442| 609 206 307| 691 179 285
RT[14] | 604 275 378| 656 191 296| 558 388 458| 551 293 383| 650 229 339

2 AMP[I3]| 519 189 277 585 120 212[ 385 265 314| 519 204 203| 585 158 248

£ SPN[I6] | 584 334 425|| 633 282 390 | 534 437 48| 545 335 415| 623 282 388
LwF[6] | 597 309 408]| 628 230 346| 571 440 49.7| 559 316 403| 630 244 352

SILT[7] | 614 320 421| 672 278 39.4| 542 404 463| 571 338 424| 670 261 375
MiB[I] | 650 281 393|| 680 248 364| 621 352 449 606 271 374| 9.1 254 372
PIFS 600 333 428| 643 267 317| 533 410 463| 574 338 425 652 316 426

Table 7: iFSS: VOC-SS 5-shot.
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Mean 5-0 5-1 5-2 5-3
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM
FT 47.2 39 7.2 46.8 2.0 38| 420 8.0 134 473 35 6.5 | 527 2.1 4.0
WI[10] 66.6 16.1 259 68.8 149 245 635 244  353| 633 143 234 709 10.6 185
% DWI [4] 67.2 163 262 69.0 157 25.6| 63.6 258 36.7| 64.1 13.6  225| 719 10.0 176

RT [14] 49.2 58 104] 454 22 42| 415 124 19.1| 46.7 4.8 8.6 | 533 4.5 8.2

A AMP [13]| 58.6 145 23.2| 61.6 121 202 545 22.8  32.1| 56.1 11.8 19.5| 624 1.3 19.1

& SPN[16] | 49.8 8.1 13.9| 487 3.6 6.6 | 44.0 137 209| 514 87 149| 55.0 6.5 11.7
LwF [6] 42.1 33 6.2 42.1 1.8 34| 379 6.8 115 414 2.5 47| 471 22 43

= ILT [7] 43.7 33 6.1 42.3 1.7 33| 410 6.1 10.6| 419 3.5 6.4 | 49.6 1.8 34
MiB [1] 439 2.6 49 41.0 1.0 20| 402 58 102| 434 2.4 45| 510 1.1 22
PIFS 64.1 169 26.7| 67.6 133 223 580 27.1 369 61.0 156 249 698 1.5 198

Table 8: iFSS: VOC-MS 1-shot.

Mean 5-0 5-1 5-2 5-3
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM | mloU-B mloU-N HM
FT 53.5 4.4 8.1 54.5 2.3 45| 512 89 152| 515 4.3 79| 569 22 43

WI[10] 66.6 19.8  30.5( 69.1 17.1  27.4| 63.7 31.9  425] 635 16.7 26.5| 70.3 13.5 227
DWI [4] 67.5 21,6 32.7| 69.7 213 32.6| 639 354 456| 643 158 254| 720 140 235
RT [14] 36.0 4.9 8.6 43.8 3.1 58| 23.0 72 11.0| 283 5.3 9.0 | 40.7 4.7 8.5

FSC

2 AMP [13]| 584 163 255 623 123 206| 54.0 272 36.1| 559 147 233| 615 10.8 184
= SPN [16] 56.4 104 17.6| 58.3 58 10.6| 54.0 182 272| 55.6 104 17.5] 578 73 13.0
LwF [6] 51.6 3.9 73 50.7 1.9 37| 494 8.6 147| 504 34 63| 559 1.7 34
=S ILT[7] 522 4.4 8.1 50.7 2.0 39| 516 97 163| 499 4.0 74| 568 1.7 34
MiB [1] 51.9 2.1 4.0 52.7 1.7 34| 479 3.4 6.4 | 506 2.5 47| 564 0.8 1.5
PIFS 65.2 237 34.8| 68.0 177 28.1] 613 404 487 625 21.8  324| 69.2 150 247

Table 9: iFSS: VOC-MS 2-shot.
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Mean 5-0 5-1 5-2 53
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM
FT 58.7 77  13.6| 599 5.1 95| 570 148 235| 559 7.1 12.5| 625 3.7 7.0
WI[10] 66.6 219 33.0| 69.6 204 315 634 329 433 634 20.1  30.6| 69.9 143 238
E DWI [4] 67.6 254  369| 703 279 399 64.1 380 47.7| 645 19.6 30.1| 715 16.0  26.1
RT [14] 45.1 10.0 16.4| 525 73 127| 354 167 227| 394 93 150 53.1 6.9 12.2
2 AMP [13]] 57.1 172 264| 625 135 222| 50.1 253 337] 551 187 28.0] 60.8 112 189
= SPN [16] 61.6 163 258| 623 104 179| 595 27.6 37.7| 60.3 1477 237| 642 123 20.6
LwF [6] 59.8 75  134| 60.7 52 9.6 | 578 146 233| 574 6.8 122| 633 35 6.6
= ILT [7] 59.0 79  139( 599 5.4 9.8 | 57.0 15.0 23.8| 56.0 7.1 126 629 4.0 7.6
MiB [1] 60.9 58 10.5] 61.0 4.8 89| 584 9.6 16.5| 59.5 59 10.8] 649 2.7 52
PIFS 64.5 275 38.6| 674 238 352| 604 416 49.3| 6l1.6 254 359 68.6 19.0 298

Table 10: iFSS: VOC-MS 5-shot.

Mean 20-0 20-1 20-2 20-3
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM
FT 41.2 4.1 7.5 36.2 2.0 38| 40.6 4.9 87| 450 3.7 6.8 | 43.1 58 103

WI[10] 438 6.9 11.9]|] 41.0 4.8 8.6 | 428 78 132| 464 6.8 11.8| 45.1 8.1 13.8
DWI [4] 44.5 7.5 12.8|| 39.8 5.0 8.9 | 444 82 139| 472 6.8 11.9| 46.6 99 164
RT [14] 46.2 5.8 10.2]] 394 3.4 62| 465 6.1 10.8| 50.4 53 9.6 | 484 8.2 14.1
AMP [13]| 375 74 124\ 334 4.8 8.4 | 374 84 13.8| 399 87 142| 391 78 13.0
SPN [16] | 43.5 6.7 11.7]] 39.2 4.6 8.2 | 437 6.4 11.1| 46.8 7.1 12.3| 443 89 148
LwF [6] 439 3.8 7.0 37.8 1.8 3.4 437 4.3 79| 479 3.7 6.8 | 46.1 5.4 9.6
ILT [7] 46.2 4.4 8.0 40.7 24 45| 460 44 8.1 50.3 4.7 8.6 | 478 6.0 10.6
MiB [1] 43.8 35 6.5 37.5 2.1 40| 441 3.6 6.6 | 47.6 39 7.1 46.0 4.4 8.1
PIFS 40.8 82 13.6|| 38.6 5.4 95| 397 8.6 14.2| 435 77 13.1| 414 109 172

Table 11: iFSS: COCO-SS 1-shot.

FSC

FSS

IL

Mean 20-0 20-1 20-2 20-3
Method | mloU-B mloU-N HM |[mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM |mloU-B mloU-N HM
FT 41.5 7.3 124 374 4.2 76| 403 9.0 147| 454 7.7 132 43.1 8.4 14.0
WI[10] 44.2 79 135 418 52 92| 433 9.8 16.0| 46.8 7.6 13.1| 447 9.2 153
2 DWI [4] 45.0 94 15.6| 404 6.1 10.6] 452 107 174 474 9.1 153 | 469 11.8 188
= RT [14] 46.7 8.8 148 406 5.5 9.7 | 46.8 105 17.2] 50.8 8.1 140 | 485 1.1 181
] AMP [13]| 357 88 142 309 5.8 9.8 | 36.2 105 163 384 9.2 14.8| 373 9.9 15.6
@ SPN [16] | 43.7 102 165 40.0 6.7 115 433 115 18.1| 47.0 107  17.5| 44.6 11.9 187
LwF [6] 443 7.1 12.3] 392 45 8.0 | 438 8.7 145] 48.1 7.3 127 46.0 8.0 13.6
= ILT [7] 46.3 6.5 11.5] 405 4.5 8.1 | 463 7.1 12.3| 504 6.7 11.8| 48.1 79 135
MiB [1] 444 6.0 10.6] 382 4.2 76| 445 7.1 12.3| 48.6 6.5 114 | 463 6.1 10.8
PIFS 40.9 1.1 17.5|| 386 6.8 11.6| 394 13.1 19.7| 435 114 18.1] 422 13.1 200

Table 12: iFSS: COCO-SS 2-shot.

Mean 20-0 20-1 20-2 20-3
Method | mloU-B mloU-N HM ||mloU-B mloU-N HM |mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM
FT 41.6 123 19.0|| 373 7.6 126 | 409 150 220 453 13.7  21.0| 43.0 129 198

WI[10] 43.6 8.7 14.6| 417 6.0 10.5| 428 107 17.1| 45.7 8.6 144| 444 9.7 159
DWI [4] 449 121 191 405 8.2 13.6 | 453 144  219| 470 122 194 46.7 137 212
RT [14] 46.9 13.7  21.2)| 41.1 9.5 154 | 464 159 237] 507 13.8  21.6] 49.1 157 238

FSC

AMP [13]| 34.6 1.0 16.7| 312 72 11.6 | 3438 145 204 | 369 109 168 356 1.5 174
SPN[16] | 43.7 156 229 40.1 1.5 179 429 177 25.1| 464 164 242 454 16.6 244

FSS

LwF [6] 44.6 129 201 39.6 8.0 133 | 437 159 233| 48.6 141 219 464 138 212
ILT [7] 47.0 1.0 178 419 7.1 122 47.0 13.9 215] 504 1.2 18.3| 48.6 1.8 19.0
MiB [1] 44.7 119 188 382 8.1 13.4| 449 139 212] 490 134 210 467 122 193

1L

PIFS 42.8 157 23.0|| 40.6 10.7 169 | 41.5 17.7 248 | 453 169 24.7| 439 175 25.0

Table 13: iFSS: COCO-SS 5-shot.

Mean 20-0 20-1 20-2 20-3
Method | mloU-B mloU-N HM || mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM
FT 38.5 4.8 8.6 333 3.8 6.8 | 398 3.6 6.6 | 403 4.1 7.5 | 405 78 131

WI[10] 46.3 8.3 14.0| 426 5.6 99| 459 9.1 152 489 8.1 13.8| 479 103 17.0
DWI [4] 46.2 92 153 41.0 5.7 99 | 465 97 16.0| 488 8.6 14.7| 48.6 12.7  20.1
RT [14] 38.4 52 9.1 34.4 2.5 46 | 422 57 10.1] 451 6.0 10.6 | 31.8 6.4 107

FSC

AMP [13]| 36.6 79 131\ 340 6.7 11.2| 36.7 8.0 132] 385 8.2 13.6| 372 8.8 14.2
SPN[16] | 403 8.7 143 37.1 75 124] 411 70 119| 423 8.2 13.7| 40.6 122 188

FSS

LwF [6] 41.0 4.1 74 355 33 6.0 | 424 2.7 52| 429 3.8 69 | 43.1 6.6 114
ILT [7] 43.7 6.2 10.8| 385 4.8 85| 450 4.8 8.7 ] 458 52 9.4 | 455 10.0 16.4
MiB [1] 40.4 3.1 58 32.8 12 24| 415 2.3 44| 439 39 7.1 43.4 5.0 9.0

L

PIFS 40.4 104 16.6| 37.0 83 13.6] 405 10.0 16.0| 42.0 9.1 150 423 143 214

Table 14: iFSS: COCO-MS 1-shot.
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Mean 20-0 20-1 20-2 20-3
Method | mIoU-B mloU-N HM || mloU-B mlIoU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM |mloU-B mloU-N HM
FT 40.3 6.8 11.7] 364 55 9.5 | 404 5.1 9.0 425 6.0 10.6| 41.8 108 17.1

WI[10] 46.5 93 154 432 58 103] 46.1 10.0 164 | 49.1 95 159] 475 1.7 188
DWI [4] 46.5 114 183]| 358 7.1 11.8| 394 9.3 15.0| 412 94 154) 43.1 78 133
RT [14] 43.8 10.1  16.4| 38.6 5.6 98 | 443 113 18.0 | 470 87 146| 452 147 222
AMP [13]| 36.0 92 146 332 79 12.8| 36.7 8.9 14.3| 379 8.7 142] 364 1.2 172
SPN [16] | 41.7 125 19.2| 384 88 143| 419 10.1 163 | 44.0 13.6 208 425 173 24.6
LwF [6] 42.7 6.5 113} 38.1 63 10.9| 433 4.9 8.8 | 44.6 5.6 99| 447 9.4 15.5
ILT [7] 47.1 10.0 16.5| 465 7.1 123 485 8.0 13.7| 477 132 20.7| 457 11.9 188
MiB [1] 42.7 52 9.3 36.9 34 63| 43.6 4.0 7.3 45.6 59 104] 448 7.5 12.8
PIFS 40.1 13.1  19.8| 372 103 16.1| 399 127 192 424 127 19.6| 410 168 238

Table 15: iFSS: COCO-MS 2-shot.

FSC

FSS

L

Mean 20-0 20-1 20-2 20-3
Method | mloU-B mloU-N HM ||mloU-B mloU-N HM | mloU-B mIoU-N HM | mloU-B mloU-N HM | mloU-B mloU-N HM
FT 39.5 115 178 36.1 11.1  17.0| 384 9.3 150 42.0 106 16.9| 41.5 148 21.8

WI[10] 46.3 103 16.8| 434 73 124) 457 1.1 17.8| 487 105 172 474 123 195
DWI [4] 46.6 145 221 35.8 7.1 11.8| 39.4 93 15.0| 412 94 154\ 431 78 133
RT [14] 44.1 16.0 235 39.8 11.8 183] 44.1 162 237 470 157 23.6| 454 202 28.0
AMP [13]| 332 11.0 165 30.8 93 142| 335 1.6 17.3] 345 102 158| 34.0 129 187
SPN [16] | 414 182 253] 379 168 233| 41.0 146 215 44.0 19.0 26.5| 428 224 294
LwF [6] 42.3 126 194 387 123 18.6| 41.6 10.6  16.9| 44.7 1.5 18.2| 444 16.1 236
ILT [7] 453 153 228 4l1.1 145 214| 453 137 210 478 141  21.8| 47.1 188 269
MiB [1] 43.8 1.5 182 383 101  16.0| 444 94 15.6| 464 114 184 462 148 224

FSS| FSC

L

PIFS 41.1 183 25.3| 382 163 229 397 155 223| 437 189 264| 427 226 295

Table 16: iFSS: COCO-MS 5-shot.

Test
Figure 3: Qualitative results on the COCO-SS 1-shot setting.
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Figure 4: Qualitative results on the VOC-SS 2-shot setting.

Figure 5: Qualitative results on the COCO-SS 2-shot setting.



