-
Notifications
You must be signed in to change notification settings - Fork 85
/
tsneclustering.py
43 lines (31 loc) · 1.09 KB
/
tsneclustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
===============
tSNE Clustering
===============
Multidimensional Scaling
https://towardsdatascience.com/t-sne-python-example-1ded9953f26
"""
print(__doc__)
import numpy as np
from sklearn.datasets import load_digits
from scipy.spatial.distance import pdist
from scipy import linalg
from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import squareform
from sklearn.manifold import TSNE
from matplotlib import pyplot as plt
import seaborn as sns
sns.set(rc={'figure.figsize':(11.7,8.27)})
palette = sns.color_palette("bright", 10)
# the well-known MNIST dataset
# X corresponds to 1797 8x8 binary images of handwritten digit strokes
# y on the other hand contains the corresponding number that the stroke represent
X, y = load_digits(return_X_y=True)
# tSNE is a dimensionality Reduction technique (check Everitt).
# At the end it is a clustering technique.
tsne = TSNE()
# Fit and transform to two dimensiones.
X_embedded = tsne.fit_transform(X)
# Plot with seaborn
sns.scatterplot(x=X_embedded[:,0], y=X_embedded[:,1], hue=y, legend='full', palette=palette)
plt.show()