-
Notifications
You must be signed in to change notification settings - Fork 85
/
plaidvision.py
317 lines (268 loc) · 9.78 KB
/
plaidvision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env python
# Copyright 2017 Vertex.AI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
import json
import os
import platform
import sys
import cv2
import imageio
import numpy as np
import pygame
import scipy.misc
import skimage
import PIL
from PIL import Image
# for backwards compat with opencv 2.x
CAP_PROP_FRAME_WIDTH = 3
CAP_PROP_FRAME_HEIGHT = 4
CAP_WIDTH = 640
CAP_HEIGHT = 480
SUPPORTED_MODELS = {
'inception_v3': {
'shape': (299, 299, 3),
'class': 'InceptionV3',
},
'mobilenet': {
'shape': (224, 224, 3),
'class': 'MobileNet',
},
'resnet50': {
'shape': (224, 224, 3),
'class': 'ResNet50',
},
'vgg16': {
'shape': (224, 224, 3),
'class': 'VGG16',
},
'vgg19': {
'shape': (224, 224, 3),
'class': 'VGG19',
},
'xception': {
'shape': (299, 299, 3),
'class': 'Xception',
},
}
class Input:
def __init__(self, path, stop):
self.path = path
self.count = 0
self.stop = stop
def open(self):
if self.path:
self.cap = cv2.VideoCapture(self.path)
else:
self.cap = cv2.VideoCapture(0)
self.cap.set(CAP_PROP_FRAME_WIDTH, CAP_WIDTH)
self.cap.set(CAP_PROP_FRAME_HEIGHT, CAP_HEIGHT)
def poll(self):
if self.stop and self.count == self.stop:
return None
ret, frame = self.cap.read()
if not ret:
return None
self.count += 1
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = np.rot90(frame)
return frame
def close(self):
self.cap.release()
class Compositor:
def __init__(self):
pygame.font.init()
self._font = pygame.font.SysFont("monospace", 14, bold=True)
self._tgt_size = (CAP_WIDTH, CAP_HEIGHT)
self._tgt = pygame.Surface(self._tgt_size)
def process(self, frame, predictions, clock):
self._tgt.fill((0, 0, 0))
# Convert the image into a surface object we can blit to the pygame window.
surface = pygame.surfarray.make_surface(frame)
# Fit the image proportionally into the window.
(tgt_width, tgt_height) = self._tgt_size
(img_width, img_height, _) = frame.shape
result_size = (img_width, img_height)
# If the image is larger than the window, in both dimensions, scale it
# down proportionally so that it entirely fills the window.
if img_width > tgt_width and img_height > tgt_height:
hscale = float(tgt_width) / float(img_width)
vscale = float(tgt_height) / float(img_height)
if hscale > vscale:
result_size = (tgt_width, int(img_height * hscale))
else:
result_size = (int(img_width * vscale), tgt_height)
# Center the image in the tgt, cropping if necessary.
hoff = (tgt_width - result_size[0]) / 2
voff = (tgt_height - result_size[1]) / 2
surface = pygame.transform.scale(surface, result_size)
self._tgt.blit(surface, (hoff, voff))
# Print some text explaining what we think the image contains, using some
# contrasting colors for a little drop-shadow effect.
captions = [self.make_caption(x) for x in predictions]
for (i, caption) in enumerate(captions):
self.blit_prediction(i, caption)
# Print the FPS
fps_text = 'FPS: {:3.1f}'.format(clock.get_fps())
self.blit_text(fps_text, (8, self._tgt.get_height() - 24))
return self._tgt
def make_caption(self, prediction):
(label_id, label_name, confidence) = prediction
return label_name + " ({0:.0f}%)".format(confidence * 100.0)
def blit_prediction(self, i, caption):
self.blit_text(caption, (8, 18 * i))
def blit_text(self, text, pos):
self.blit_text_part(text, pos, -1, (110, 110, 240))
self.blit_text_part(text, pos, 2, (0, 0, 100))
self.blit_text_part(text, pos, 1, (100, 100, 255))
self.blit_text_part(text, pos, 0, (240, 240, 110))
def blit_text_part(self, caption, pos, offset, color):
label = self._font.render(caption, 1, color)
label_pos = (pos[0] + offset, pos[1] + offset)
self._tgt.blit(label, label_pos)
class OutputScreen:
def __init__(self):
self._screen_size = (CAP_WIDTH, CAP_HEIGHT)
pygame.display.init()
self._screen = pygame.display.set_mode(self._screen_size)
pygame.display.set_caption("Plaidvision")
def close(self):
pass
def process(self, surface):
surface = surface.convert(self._screen)
self._screen.blit(surface, self._screen.get_rect())
pygame.display.flip()
class OutputFile:
def __init__(self, path):
if platform.machine() != 'armv7l':
imageio.plugins.ffmpeg.download()
self.writer = imageio.get_writer(path, fps=30)
def close(self):
self.writer.close()
def process(self, surface):
surface = pygame.transform.flip(surface, True, False)
surface = pygame.transform.rotate(surface, 90)
frame = pygame.surfarray.array3d(surface)
self.writer.append_data(frame)
class Model:
def __init__(self, name, weights):
info = SUPPORTED_MODELS.get(name)
self.shape = info.get('shape')
module = importlib.import_module('.'.join(['keras', 'applications', name]))
ModelClass = getattr(module, info['class'])
self.preprocess_input = getattr(module, 'preprocess_input')
self.decode_predictions = getattr(module, 'decode_predictions')
# Some models think they only work with TensorFlow, but the truth is that it
# won't work with Theano or CNTK, and it doesn't know that PlaidML exists.
# It'll work just fine with PlaidML as long as we pretend to be tensorflow
# by monkeypatching the backend() function during model initialization.
import keras.backend as K
old_backend = K.backend
K.backend = lambda: "tensorflow"
self.model = ModelClass(weights=weights)
K.backend = old_backend
def classify(self, img, top_n=5):
if img.shape != self.shape:
#img = scipy.misc.imresize(img, self.shape).astype(float)
im = Image.fromarray(img)
size = (299,299)
img = np.array(im.resize(size, PIL.Image.BICUBIC))
pass
data = np.expand_dims(img, axis=0)
data = self.preprocess_input(data)
predictions = self.model.predict(data)
return self.decode_predictions(predictions, top=top_n)[0]
def loop(headless):
if headless:
return True
for event in pygame.event.get():
if event.type == pygame.QUIT:
sys.exit()
return True
def has_plaid():
try:
import plaidml.keras
return True
except ImportError:
return False
def main():
parser = argparse.ArgumentParser()
backend_args = parser.add_mutually_exclusive_group()
backend_args.add_argument('--plaid', action='store_true')
backend_args.add_argument('--no-plaid', action='store_true')
parser.add_argument('-v', '--verbose', type=int, nargs='?', const=3)
parser.add_argument('--input')
parser.add_argument('--output')
parser.add_argument('--json')
parser.add_argument('--headless', action='store_true')
parser.add_argument('--weights', default='imagenet')
parser.add_argument('--frames', type=int)
parser.add_argument('model', choices=list(SUPPORTED_MODELS))
args = parser.parse_args()
if args.plaid or (not args.no_plaid and has_plaid()):
print("Using PlaidML backend.")
import plaidml.keras
if args.verbose:
plaidml._internal_set_vlog(args.verbose)
plaidml.keras.install_backend()
clock = pygame.time.Clock()
input = Input(args.input, args.frames)
model = Model(args.model, args.weights)
outputs = []
if not args.headless:
outputs.append(OutputScreen())
if args.output:
outputs.append(OutputFile(args.output))
compositor = Compositor()
json_output = dict(results=[])
inference_clock = pygame.time.Clock()
try:
input.open()
while loop(args.headless):
clock.tick()
frame = input.poll()
if frame is None:
break
inference_clock.tick()
predictions = model.classify(frame)
inference_clock.tick()
record = dict(
elapsed=inference_clock.get_time(),
predictions=[
dict(
label_id=x[0],
label_name=x[1],
confidence=float(x[2]),
) for x in predictions
],
)
json_output['results'].append(record)
surface = compositor.process(frame, predictions, clock)
for output in outputs:
output.process(surface)
except KeyboardInterrupt:
pass
except Exception as ex:
json_output['exception'] = ex
raise
finally:
for output in outputs:
output.close()
input.close()
if args.json:
with open(args.json, 'w') as file_:
json.dump(json_output, file_)
if __name__ == "__main__":
main()