forked from victorminden/strong-skel
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsrskelf_hybrid.m
334 lines (295 loc) · 9.88 KB
/
srskelf_hybrid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
function F = srskelf_hybrid(A,x,occ,rank_or_tol,pxyfun,opts)
% SRSKELF_HYBRID Strong recursive skeletonization factorization with
% hybrid admissibility (symmetric positive definite only).
%
% F = SRSKELF_HYBRID(A,X,OCC,RANK_OR_TOL,PXYFUN) produces a
% factorization F of the interaction matrix A on the points X using tree
% occupancy parameter OCC, local precision parameter RANK_OR_TOL, and
% proxy function PXYFUN to capture the far field. This is a function of
% the form
%
% [KPXY,NBR] = PXYFUN(X,SLF,NBR,L,CTR)
%
% that is called for every block, where
%
% - KPXY: interaction matrix against artificial proxy points
% - NBR: block neighbor indices (can be modified)
% - X: input points
% - SLF: block indices
% - L: block size
% - CTR: block center
%
% See the examples for further details.
%
% F = SRSKELF_HYBRID(A,X,OCC,RANK_OR_TOL,PXYFUN,OPTS) also passes
% various options to the algorithm. Valid options include:
%
% - EXT: set the root node extent to [EXT(I,1) EXT(I,2)] along
% dimension I. If EXT is empty (default), then the root extent
% is calculated from the data.
%
% - LVLMAX: maximum tree depth (default: LVLMAX = Inf).
%
% - VERB: display status of the code if VERB = 1 (default: VERB = 0).
start = tic;
% Set sane default parameters
if nargin < 5
pxyfun = [];
end % if
if nargin < 6
opts = [];
end % if
if ~isfield(opts,'ext')
opts.ext = [];
end % if
if ~isfield(opts,'lvlmax')
opts.lvlmax = Inf;
end % if
if ~isfield(opts,'verb')
opts.verb = 0;
end % if
if opts.verb
disp(['This is symmetric positive definite srskelf with hybrid', ...
' admissibility (RS-WS).']);
disp('Diagonal blocks will be factorized with Cholesky.');
end % if
% Build tree to hold the discretization points
N = size(x,2);
tic
t = shypoct(x,occ,opts.lvlmax,opts.ext);
if opts.verb
fprintf(['-'*ones(1,80) '\n'])
fprintf('%5s | %6s | %8s | %8s | %8s | %8s | %10s (s)\n', ...
'lvl','nblk','nRemIn','nRemOut','inRatio','outRatio','time')
% Print summary information about tree construction
fprintf(['-'*ones(1,80) '\n'])
fprintf(' %3s | %63.2e (s)\n','-',toc)
% Count the nonempty boxes at each level
pblk = zeros(t.nlvl+1,1);
for lvl = 1:t.nlvl
pblk(lvl+1) = pblk(lvl);
for i = t.lvp(lvl)+1:t.lvp(lvl+1)
if ~isempty(t.nodes(i).xi)
pblk(lvl+1) = pblk(lvl+1) + 1;
end % if
end % for
end % for
end % if
% Initialize the data structure holding the factorization
nbox = t.lvp(end);
e = cell(nbox,1);
% Each element of F.factors will contain the following data for one box:
% - sk: the skeleton DOF indices
% - rd: the redundant DOF indices
% - nbr: the neighbor (near-field) DOF indices
% - T: the interpolation matrix mapping redundant to skeleton
% - E: the left factor of the (symmmetric) Schur complement update to
% sk
% - L: the Cholesky factor of the diagonal block
% - C: the left factor of the (symmetric) Schur complement update to
% nbr
F = struct('sk',e,'rd',e,'nbr',e,'T',e,'E',e,'L',e,'C',e);
F = struct('N',N,'nlvl',t.nlvl,'lvp',zeros(1,t.nlvl+1),'factors',F);
nlvl = 0;
n = 0;
% Mark every DOF as "remaining", i.e., not yet eliminated.
rem = true(N,1);
lookup_list = zeros(nbox,2);
% Loop over the levels of the tree from bottom to top
for lvl = t.nlvl:-1:1
% For each box, pull up information about skeletons from child boxes
for i = t.lvp(lvl)+1:t.lvp(lvl+1)
t.nodes(i).xi = [t.nodes(i).xi [t.nodes(t.nodes(i).chld).xi]];
end % for
% We factorize both half-integer levels for every level lower than 2
% except the first level otherwise we just have weak skeletonization
if lvl <= 2
ub = 1;
else
ub = 2;
end % if
if lvl == t.nlvl
lb = 2;
else
lb = 1;
end % if
% Loop over half-integer levels
for pass = lb:ub
time = tic;
nlvl = nlvl + 1;
nrem1 = sum(rem);
% Loop over each box in this level
for i = t.lvp(lvl)+1:t.lvp(lvl+1)
slf = t.nodes(i).xi;
nbr = [t.nodes(t.nodes(i).nbor).xi];
nslf = length(slf);
% Sorting not necessary, but makes debugging easier
slf = sort(slf);
nnbr = length(nbr);
% Sorting not necessary, but makes debugging easier
nbr = sort(nbr);
if pass == 1
lst = nbr;
nbr = [];
nnbr = 0;
l = t.lrt/2^(lvl - 1);
else
lst = [t.nodes(t.nodes(i).ilist).xi];
l = t.lrt/2^(lvl - 1) * 5/3;
end % if
% Compute proxy interactions and subselect neighbors
Kpxy = zeros(0,nslf);
if lvl > 2
[Kpxy,lst] = pxyfun(x,slf,lst,l,t.nodes(i).ctr);
end % if
nlst = length(lst);
% Sorting not necessary, but makes debugging easier
lst = sort(lst);
% Compute interaction matrix between box and far-field (pass==2) or
% near-field (pass==1).
K1 = full(A(lst,slf));
K2 = spget('lst','slf');
K = [K1 + K2; Kpxy];
% Compute the skeleton/redundant points and interpolation matrix
[sk,rd,T] = id(K,rank_or_tol);
% Move on to next box if no compression for this box
if isempty(rd)
continue
end % if
% Otherwise, compute the diagonal and off-diagonal blocks for this
% box
K = full(A(slf,slf)) + spget('slf','slf');
if pass == 2
K2 = full(A(nbr,slf)) + spget('nbr','slf');
K2(:,rd) = K2(:,rd) - K2(:,sk)*T;
else
K2 = [];
end % if
% Skeletonize
K(rd,:) = K(rd,:) - T'*K(sk,:);
K(:,rd) = K(:,rd) - K(:,sk)*T;
% Cholesky factor of diagonal block
L = chol(K(rd,rd),'lower');
% Throw Cholesky onto intermediate factors
E = K(sk,rd)/L';
if pass == 1
C = zeros(0,length(rd));
else
C = K2(:,rd)/L';
end % if
% Store matrix factors for this box
n = n + 1;
F.factors(n).sk = slf(sk);
F.factors(n).rd = slf(rd);
if pass == 2
F.factors(n).nbr = nbr;
else
F.factors(n).nbr = [];
end % if
F.factors(n).T = T;
F.factors(n).E = E;
F.factors(n).L = L;
F.factors(n).C = C;
% Box number i for pass is at index n (more sensible for
% non-uniform case)
lookup_list(i,pass) = n;
t.nodes(i).xi = slf(sk);
rem(slf(rd)) = 0;
end % for
% Keep track of end of level
F.lvp(nlvl+1) = n;
% Print summary for the latest level
if opts.verb
nrem2 = sum(rem);
nblk = pblk(lvl) + t.lvp(lvl+1) - t.lvp(lvl);
fprintf('%3d-%1d | %6d | %8d | %8d | %8.2f | %8.2f | %10.2e (s)\n', ...
lvl,pass,nblk,nrem1,nrem2,nrem1/nblk,nrem2/nblk,toc(time))
end % if
end % for
end % for
% Truncate extra storage, and we are done
F.factors = F.factors(1:n);
if opts.verb
fprintf(['-'*ones(1,80) '\n'])
toc(start)
end % if
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function A = spget(Ityp,Jtyp)
% A = SPGET(ITYP,JTYP) Sparse matrix access function (native MATLAB is
% slow for large matrices). We grab the accumulated Schur complement
% updates to a block of the matrix from previously-skeletonized
% levels. Index sets ITYP and JTYP can be 'slf', 'nbr', or 'lst'.
% Translate input strings to index sets (and their lengths)
if strcmpi(Ityp,'slf')
I_ = slf;
m_ = nslf;
elseif strcmpi(Ityp,'nbr')
I_ = nbr;
m_ = nnbr;
elseif strcmpi(Ityp,'lst')
I_ = lst;
m_ = nlst;
end % if
if strcmpi(Jtyp,'slf')
J_ = slf;
n_ = nslf;
elseif strcmpi(Jtyp,'nbr')
J_ = nbr;
n_ = nnbr;
elseif strcmpi(Jtyp,'lst')
J_ = lst;
n_ = nlst;
end % if
% Initialize an empty matrix to store updates
A = zeros(m_,n_);
% Find the updates, modifying update_list in the function call
update_list = false(nbox,1);
get_update_list(i);
% Translate boxes (indexed relative to tree) to factors (indexed
% relative to factorization)
update_list = lookup_list(flip(find(update_list)'),:);
update_list = update_list(update_list ~=0);
update_list = update_list(:);
for jj = update_list'
g = F.factors(jj);
xj = [g.sk, g.nbr];
f = length(g.sk);
if strcmpi(Ityp,Jtyp)
% If this is a diagonal block, then it is symmetric and has same
% factors on each side
idxI = ismembc2(xj,I_);
tmp1 = idxI~=0;
subI = idxI(tmp1);
idxI1 = tmp1(1:f);
idxI2 = tmp1(f+1:end);
tmp1 = [g.E(idxI1,:); g.C(idxI2,:)];
A(subI, subI) = A(subI,subI) - tmp1*tmp1';
else
% Need different row and column factors
idxI = ismembc2(xj,I_);
idxJ = ismembc2(xj,J_);
tmp1 = idxI~=0;
tmp2 = idxJ~=0;
subI = idxI(tmp1);
subJ = idxJ(tmp2);
idxI1 = tmp1(1:f);
idxI2 = tmp1(f+1:end);
idxJ1 = tmp2(1:f);
idxJ2 = tmp2(f+1:end);
tmp1 = [g.E(idxI1,:); g.C(idxI2,:)];
tmp2 = [g.E(idxJ1,:); g.C(idxJ2,:)]';
A(subI, subJ) = A(subI,subJ) - tmp1*tmp2;
end % if
end % for
function get_update_list(node_idx)
% GET_UPDATE_LIST(NODE_IDX) Recursively get the list of all nodes in
% the tree that could have generated Schur complement updates to
% points in node NODE_IDX
update_list(node_idx) = 1;
update_list(t.nodes(node_idx).snbor) = 1;
for k = t.nodes(node_idx).chld
get_update_list(k);
end % for
end % get_update_list
end % spget
end % srskelf_hybrif