diff --git a/src/scalar_4x64_impl.h b/src/scalar_4x64_impl.h index 1d14740577677..715cc12ee53ef 100644 --- a/src/scalar_4x64_impl.h +++ b/src/scalar_4x64_impl.h @@ -41,16 +41,22 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsig r->d[1] = 0; r->d[2] = 0; r->d[3] = 0; + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6); + return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); VERIFY_CHECK(count < 32); VERIFY_CHECK(offset + count <= 256); + if ((offset + count - 1) >> 6 == offset >> 6) { return secp256k1_scalar_get_bits(a, offset, count); } else { @@ -74,6 +80,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) { secp256k1_uint128 t; VERIFY_CHECK(overflow <= 1); + secp256k1_u128_from_u64(&t, r->d[0]); secp256k1_u128_accum_u64(&t, overflow * SECP256K1_N_C_0); r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64); @@ -85,12 +92,17 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigne r->d[2] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64); secp256k1_u128_accum_u64(&t, r->d[3]); r->d[3] = secp256k1_u128_to_u64(&t); + + secp256k1_scalar_verify(r); return overflow; } static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { int overflow; secp256k1_uint128 t; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + secp256k1_u128_from_u64(&t, a->d[0]); secp256k1_u128_accum_u64(&t, b->d[0]); r->d[0] = secp256k1_u128_to_u64(&t); secp256k1_u128_rshift(&t, 64); @@ -106,13 +118,17 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, overflow = secp256k1_u128_to_u64(&t) + secp256k1_scalar_check_overflow(r); VERIFY_CHECK(overflow == 0 || overflow == 1); secp256k1_scalar_reduce(r, overflow); + + secp256k1_scalar_verify(r); return overflow; } static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { secp256k1_uint128 t; volatile int vflag = flag; + secp256k1_scalar_verify(r); VERIFY_CHECK(bit < 256); + bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */ secp256k1_u128_from_u64(&t, r->d[0]); secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F)); @@ -126,6 +142,8 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int secp256k1_u128_accum_u64(&t, r->d[3]); secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F)); r->d[3] = secp256k1_u128_to_u64(&t); + + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(secp256k1_u128_hi_u64(&t) == 0); #endif @@ -141,9 +159,13 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b if (overflow) { *overflow = over; } + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { + secp256k1_scalar_verify(a); + secp256k1_write_be64(&bin[0], a->d[3]); secp256k1_write_be64(&bin[8], a->d[2]); secp256k1_write_be64(&bin[16], a->d[1]); @@ -151,12 +173,16 @@ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0; } static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0); secp256k1_uint128 t; + secp256k1_scalar_verify(a); + secp256k1_u128_from_u64(&t, ~a->d[0]); secp256k1_u128_accum_u64(&t, SECP256K1_N_0 + 1); r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64); @@ -169,15 +195,21 @@ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar secp256k1_u128_accum_u64(&t, ~a->d[3]); secp256k1_u128_accum_u64(&t, SECP256K1_N_3); r->d[3] = secp256k1_u128_to_u64(&t) & nonzero; + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0; } static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { int yes = 0; int no = 0; + secp256k1_scalar_verify(a); + no |= (a->d[3] < SECP256K1_N_H_3); yes |= (a->d[3] > SECP256K1_N_H_3) & ~no; no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */ @@ -194,6 +226,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { uint64_t mask = -vflag; uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1; secp256k1_uint128 t; + secp256k1_scalar_verify(r); + secp256k1_u128_from_u64(&t, r->d[0] ^ mask); secp256k1_u128_accum_u64(&t, (SECP256K1_N_0 + 1) & mask); r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64); @@ -206,6 +240,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { secp256k1_u128_accum_u64(&t, r->d[3] ^ mask); secp256k1_u128_accum_u64(&t, SECP256K1_N_3 & mask); r->d[3] = secp256k1_u128_to_u64(&t) & nonzero; + + secp256k1_scalar_verify(r); return 2 * (mask == 0) - 1; } @@ -764,23 +800,34 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, c static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { uint64_t l[8]; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); + + secp256k1_scalar_verify(r); } static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { int ret; + secp256k1_scalar_verify(r); VERIFY_CHECK(n > 0); VERIFY_CHECK(n < 16); + ret = r->d[0] & ((1 << n) - 1); r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n)); r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n)); r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n)); r->d[3] = (r->d[3] >> n); + + secp256k1_scalar_verify(r); return ret; } static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { + secp256k1_scalar_verify(k); + r1->d[0] = k->d[0]; r1->d[1] = k->d[1]; r1->d[2] = 0; @@ -789,9 +836,15 @@ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r r2->d[1] = k->d[3]; r2->d[2] = 0; r2->d[3] = 0; + + secp256k1_scalar_verify(r1); + secp256k1_scalar_verify(r2); } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; } @@ -800,7 +853,10 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, unsigned int shiftlimbs; unsigned int shiftlow; unsigned int shifthigh; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); VERIFY_CHECK(shift >= 256); + secp256k1_scalar_mul_512(l, a, b); shiftlimbs = shift >> 6; shiftlow = shift & 0x3F; @@ -810,18 +866,24 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0; secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); + + secp256k1_scalar_verify(r); } static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { uint64_t mask0, mask1; volatile int vflag = flag; + secp256k1_scalar_verify(a); SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d)); + mask0 = vflag + ~((uint64_t)0); mask1 = ~mask0; r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1); r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1); r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1); r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1); + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) { @@ -841,18 +903,13 @@ static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_ r->d[2] = a2 >> 4 | a3 << 58; r->d[3] = a3 >> 6 | a4 << 56; -#ifdef VERIFY - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); -#endif + secp256k1_scalar_verify(r); } static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) { const uint64_t M62 = UINT64_MAX >> 2; const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3]; - -#ifdef VERIFY - VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0); -#endif + secp256k1_scalar_verify(a); r->v[0] = a0 & M62; r->v[1] = (a0 >> 62 | a1 << 2) & M62; @@ -871,10 +928,13 @@ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif + secp256k1_scalar_verify(x); + secp256k1_scalar_to_signed62(&s, x); secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed62(r, &s); + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); #endif @@ -885,16 +945,21 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif + secp256k1_scalar_verify(x); + secp256k1_scalar_to_signed62(&s, x); secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed62(r, &s); + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); #endif } SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return !(a->d[0] & 1); } diff --git a/src/scalar_8x32_impl.h b/src/scalar_8x32_impl.h index 80ef3ef2488e9..5ca1342273790 100644 --- a/src/scalar_8x32_impl.h +++ b/src/scalar_8x32_impl.h @@ -58,16 +58,22 @@ SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsig r->d[5] = 0; r->d[6] = 0; r->d[7] = 0; + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5); + return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); VERIFY_CHECK(count < 32); VERIFY_CHECK(offset + count <= 256); + if ((offset + count - 1) >> 5 == offset >> 5) { return secp256k1_scalar_get_bits(a, offset, count); } else { @@ -97,6 +103,7 @@ SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scal SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) { uint64_t t; VERIFY_CHECK(overflow <= 1); + t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0; r->d[0] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1; @@ -113,12 +120,17 @@ SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_ r->d[6] = t & 0xFFFFFFFFUL; t >>= 32; t += (uint64_t)r->d[7]; r->d[7] = t & 0xFFFFFFFFUL; + + secp256k1_scalar_verify(r); return overflow; } static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { int overflow; uint64_t t = (uint64_t)a->d[0] + b->d[0]; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)a->d[1] + b->d[1]; r->d[1] = t & 0xFFFFFFFFULL; t >>= 32; @@ -137,13 +149,17 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, overflow = t + secp256k1_scalar_check_overflow(r); VERIFY_CHECK(overflow == 0 || overflow == 1); secp256k1_scalar_reduce(r, overflow); + + secp256k1_scalar_verify(r); return overflow; } static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { uint64_t t; volatile int vflag = flag; + secp256k1_scalar_verify(r); VERIFY_CHECK(bit < 256); + bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */ t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F)); r->d[0] = t & 0xFFFFFFFFULL; t >>= 32; @@ -161,9 +177,10 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int r->d[6] = t & 0xFFFFFFFFULL; t >>= 32; t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F)); r->d[7] = t & 0xFFFFFFFFULL; + + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK((t >> 32) == 0); - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); #endif } @@ -181,9 +198,13 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b if (overflow) { *overflow = over; } + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { + secp256k1_scalar_verify(a); + secp256k1_write_be32(&bin[0], a->d[7]); secp256k1_write_be32(&bin[4], a->d[6]); secp256k1_write_be32(&bin[8], a->d[5]); @@ -195,12 +216,16 @@ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0); uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1; + secp256k1_scalar_verify(a); + r->d[0] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[1]) + SECP256K1_N_1; r->d[1] = t & nonzero; t >>= 32; @@ -216,15 +241,21 @@ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar r->d[6] = t & nonzero; t >>= 32; t += (uint64_t)(~a->d[7]) + SECP256K1_N_7; r->d[7] = t & nonzero; + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0; } static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { int yes = 0; int no = 0; + secp256k1_scalar_verify(a); + no |= (a->d[7] < SECP256K1_N_H_7); yes |= (a->d[7] > SECP256K1_N_H_7) & ~no; no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */ @@ -247,6 +278,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { uint32_t mask = -vflag; uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0); uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask); + secp256k1_scalar_verify(r); + r->d[0] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask); r->d[1] = t & nonzero; t >>= 32; @@ -262,6 +295,8 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { r->d[6] = t & nonzero; t >>= 32; t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask); r->d[7] = t & nonzero; + + secp256k1_scalar_verify(r); return 2 * (mask == 0) - 1; } @@ -569,14 +604,21 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, con static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { uint32_t l[16]; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + secp256k1_scalar_mul_512(l, a, b); secp256k1_scalar_reduce_512(r, l); + + secp256k1_scalar_verify(r); } static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { int ret; + secp256k1_scalar_verify(r); VERIFY_CHECK(n > 0); VERIFY_CHECK(n < 16); + ret = r->d[0] & ((1 << n) - 1); r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n)); r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n)); @@ -586,10 +628,14 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n)); r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n)); r->d[7] = (r->d[7] >> n); + + secp256k1_scalar_verify(r); return ret; } static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { + secp256k1_scalar_verify(k); + r1->d[0] = k->d[0]; r1->d[1] = k->d[1]; r1->d[2] = k->d[2]; @@ -606,9 +652,15 @@ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r r2->d[5] = 0; r2->d[6] = 0; r2->d[7] = 0; + + secp256k1_scalar_verify(r1); + secp256k1_scalar_verify(r2); } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0; } @@ -617,7 +669,10 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, unsigned int shiftlimbs; unsigned int shiftlow; unsigned int shifthigh; + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); VERIFY_CHECK(shift >= 256); + secp256k1_scalar_mul_512(l, a, b); shiftlimbs = shift >> 5; shiftlow = shift & 0x1F; @@ -631,12 +686,16 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0; r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0; secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); + + secp256k1_scalar_verify(r); } static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { uint32_t mask0, mask1; volatile int vflag = flag; + secp256k1_scalar_verify(a); SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d)); + mask0 = vflag + ~((uint32_t)0); mask1 = ~mask0; r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1); @@ -647,6 +706,8 @@ static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const se r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1); r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1); r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1); + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) { @@ -675,19 +736,14 @@ static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_ r->d[6] = a6 >> 12 | a7 << 18; r->d[7] = a7 >> 14 | a8 << 16; -#ifdef VERIFY - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); -#endif + secp256k1_scalar_verify(r); } static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) { const uint32_t M30 = UINT32_MAX >> 2; const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3], a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7]; - -#ifdef VERIFY - VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0); -#endif + secp256k1_scalar_verify(a); r->v[0] = a0 & M30; r->v[1] = (a0 >> 30 | a1 << 2) & M30; @@ -710,10 +766,13 @@ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif + secp256k1_scalar_verify(x); + secp256k1_scalar_to_signed30(&s, x); secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed30(r, &s); + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); #endif @@ -724,16 +783,21 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc #ifdef VERIFY int zero_in = secp256k1_scalar_is_zero(x); #endif + secp256k1_scalar_verify(x); + secp256k1_scalar_to_signed30(&s, x); secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar); secp256k1_scalar_from_signed30(r, &s); + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); #endif } SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return !(a->d[0] & 1); } diff --git a/src/scalar_impl.h b/src/scalar_impl.h index 77abb836593cb..3eca23b4f92fc 100644 --- a/src/scalar_impl.h +++ b/src/scalar_impl.h @@ -30,6 +30,8 @@ static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) { int overflow; secp256k1_scalar_set_b32(r, bin, &overflow); + + secp256k1_scalar_verify(r); return (!overflow) & (!secp256k1_scalar_is_zero(r)); } @@ -61,11 +63,16 @@ static void secp256k1_scalar_verify(const secp256k1_scalar *r) { * (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n). */ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) { + secp256k1_scalar_verify(k); VERIFY_CHECK(r1 != k); VERIFY_CHECK(r2 != k); VERIFY_CHECK(r1 != r2); + *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER; *r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; + + secp256k1_scalar_verify(r1); + secp256k1_scalar_verify(r2); } #else /** @@ -148,9 +155,11 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL, 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL ); + secp256k1_scalar_verify(k); VERIFY_CHECK(r1 != k); VERIFY_CHECK(r2 != k); VERIFY_CHECK(r1 != r2); + /* these _var calls are constant time since the shift amount is constant */ secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384); secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384); @@ -161,6 +170,8 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT secp256k1_scalar_negate(r1, r1); secp256k1_scalar_add(r1, r1, k); + secp256k1_scalar_verify(r1); + secp256k1_scalar_verify(r2); #ifdef VERIFY secp256k1_scalar_split_lambda_verify(r1, r2, k); #endif diff --git a/src/scalar_low_impl.h b/src/scalar_low_impl.h index 09343c4935a2e..e2356a5be18f8 100644 --- a/src/scalar_low_impl.h +++ b/src/scalar_low_impl.h @@ -14,6 +14,8 @@ #include SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return !(*a & 1); } @@ -21,9 +23,13 @@ SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v % EXHAUSTIVE_TEST_ORDER; + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); + if (offset < 32) return ((*a >> offset) & ((((uint32_t)1) << count) - 1)); else @@ -31,24 +37,34 @@ SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_s } SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) { + secp256k1_scalar_verify(a); + return secp256k1_scalar_get_bits(a, offset, count); } SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; } static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + *r = (*a + *b) % EXHAUSTIVE_TEST_ORDER; + + secp256k1_scalar_verify(r); return *r < *b; } static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { + secp256k1_scalar_verify(r); + if (flag && bit < 32) *r += ((uint32_t)1 << bit); + + secp256k1_scalar_verify(r); #ifdef VERIFY VERIFY_CHECK(bit < 32); /* Verify that adding (1 << bit) will not overflow any in-range scalar *r by overflowing the underlying uint32_t. */ VERIFY_CHECK(((uint32_t)1 << bit) - 1 <= UINT32_MAX - EXHAUSTIVE_TEST_ORDER); - VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); #endif } @@ -64,82 +80,129 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b } } if (overflow) *overflow = over; + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { + secp256k1_scalar_verify(a); + memset(bin, 0, 32); bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a; } SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return *a == 0; } static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + if (*a == 0) { *r = 0; } else { *r = EXHAUSTIVE_TEST_ORDER - *a; } + + secp256k1_scalar_verify(r); } SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return *a == 1; } static int secp256k1_scalar_is_high(const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + return *a > EXHAUSTIVE_TEST_ORDER / 2; } static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { + secp256k1_scalar_verify(r); + if (flag) secp256k1_scalar_negate(r, r); + + secp256k1_scalar_verify(r); return flag ? -1 : 1; } static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) { + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + *r = (*a * *b) % EXHAUSTIVE_TEST_ORDER; + + secp256k1_scalar_verify(r); } static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { int ret; + secp256k1_scalar_verify(r); VERIFY_CHECK(n > 0); VERIFY_CHECK(n < 16); + ret = *r & ((1 << n) - 1); *r >>= n; + + secp256k1_scalar_verify(r); return ret; } static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { + secp256k1_scalar_verify(a); + *r1 = *a; *r2 = 0; + + secp256k1_scalar_verify(r1); + secp256k1_scalar_verify(r2); } SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { + secp256k1_scalar_verify(a); + secp256k1_scalar_verify(b); + return *a == *b; } static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { uint32_t mask0, mask1; volatile int vflag = flag; + secp256k1_scalar_verify(a); SECP256K1_CHECKMEM_CHECK_VERIFY(r, sizeof(*r)); + mask0 = vflag + ~((uint32_t)0); mask1 = ~mask0; *r = (*r & mask0) | (*a & mask1); + + secp256k1_scalar_verify(r); } static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { int i; *r = 0; + secp256k1_scalar_verify(x); + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) *r = i; + + secp256k1_scalar_verify(r); /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus * have a composite group order; fix it in exhaustive_tests.c). */ VERIFY_CHECK(*r != 0); } static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_scalar_verify(x); + secp256k1_scalar_inverse(r, x); + + secp256k1_scalar_verify(r); } #endif /* SECP256K1_SCALAR_REPR_IMPL_H */