-
Notifications
You must be signed in to change notification settings - Fork 400
/
Deep Neural Network Application v3.py
552 lines (434 loc) · 19.9 KB
/
Deep Neural Network Application v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# coding: utf-8
# # Deep Neural Network for Image Classification: Application
#
# When you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this course!
#
# You will use use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classification. Hopefully, you will see an improvement in accuracy relative to your previous logistic regression implementation.
#
# **After this assignment you will be able to:**
# - Build and apply a deep neural network to supervised learning.
#
# Let's get started!
# ## 1 - Packages
# Let's first import all the packages that you will need during this assignment.
# - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.
# - [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.
# - [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.
# - [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end.
# - dnn_app_utils provides the functions implemented in the "Building your Deep Neural Network: Step by Step" assignment to this notebook.
# - np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work.
# In[1]:
import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v2 import *
get_ipython().magic('matplotlib inline')
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
get_ipython().magic('load_ext autoreload')
get_ipython().magic('autoreload 2')
np.random.seed(1)
# ## 2 - Dataset
#
# You will use the same "Cat vs non-Cat" dataset as in "Logistic Regression as a Neural Network" (Assignment 2). The model you had built had 70% test accuracy on classifying cats vs non-cats images. Hopefully, your new model will perform a better!
#
# **Problem Statement**: You are given a dataset ("data.h5") containing:
# - a training set of m_train images labelled as cat (1) or non-cat (0)
# - a test set of m_test images labelled as cat and non-cat
# - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB).
#
# Let's get more familiar with the dataset. Load the data by running the cell below.
# In[2]:
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
# The following code will show you an image in the dataset. Feel free to change the index and re-run the cell multiple times to see other images.
# In[6]:
# Example of a picture
index = 15
plt.imshow(train_x_orig[index])
print(train_x_orig.shape)
print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")
# In[7]:
# Explore your dataset
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]
print ("Number of training examples: " + str(m_train))
print ("Number of testing examples: " + str(m_test))
print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("train_x_orig shape: " + str(train_x_orig.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x_orig shape: " + str(test_x_orig.shape))
print ("test_y shape: " + str(test_y.shape))
# As usual, you reshape and standardize the images before feeding them to the network. The code is given in the cell below.
#
# <img src="images/imvectorkiank.png" style="width:450px;height:300px;">
#
# <caption><center> <u>Figure 1</u>: Image to vector conversion. <br> </center></caption>
# In[8]:
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
print ("train_x's shape: " + str(train_x.shape))
print ("test_x's shape: " + str(test_x.shape))
# $12,288$ equals $64 \times 64 \times 3$ which is the size of one reshaped image vector.
# ## 3 - Architecture of your model
# Now that you are familiar with the dataset, it is time to build a deep neural network to distinguish cat images from non-cat images.
#
# You will build two different models:
# - A 2-layer neural network
# - An L-layer deep neural network
#
# You will then compare the performance of these models, and also try out different values for $L$.
#
# Let's look at the two architectures.
#
# ### 3.1 - 2-layer neural network
#
# <img src="images/2layerNN_kiank.png" style="width:650px;height:400px;">
# <caption><center> <u>Figure 2</u>: 2-layer neural network. <br> The model can be summarized as: ***INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT***. </center></caption>
#
# <u>Detailed Architecture of figure 2</u>:
# - The input is a (64,64,3) image which is flattened to a vector of size $(12288,1)$.
# - The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ of size $(n^{[1]}, 12288)$.
# - You then add a bias term and take its relu to get the following vector: $[a_0^{[1]}, a_1^{[1]},..., a_{n^{[1]}-1}^{[1]}]^T$.
# - You then repeat the same process.
# - You multiply the resulting vector by $W^{[2]}$ and add your intercept (bias).
# - Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.
#
# ### 3.2 - L-layer deep neural network
#
# It is hard to represent an L-layer deep neural network with the above representation. However, here is a simplified network representation:
#
# <img src="images/LlayerNN_kiank.png" style="width:650px;height:400px;">
# <caption><center> <u>Figure 3</u>: L-layer neural network. <br> The model can be summarized as: ***[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID***</center></caption>
#
# <u>Detailed Architecture of figure 3</u>:
# - The input is a (64,64,3) image which is flattened to a vector of size (12288,1).
# - The corresponding vector: $[x_0,x_1,...,x_{12287}]^T$ is then multiplied by the weight matrix $W^{[1]}$ and then you add the intercept $b^{[1]}$. The result is called the linear unit.
# - Next, you take the relu of the linear unit. This process could be repeated several times for each $(W^{[l]}, b^{[l]})$ depending on the model architecture.
# - Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat.
#
# ### 3.3 - General methodology
#
# As usual you will follow the Deep Learning methodology to build the model:
# 1. Initialize parameters / Define hyperparameters
# 2. Loop for num_iterations:
# a. Forward propagation
# b. Compute cost function
# c. Backward propagation
# d. Update parameters (using parameters, and grads from backprop)
# 4. Use trained parameters to predict labels
#
# Let's now implement those two models!
# ## 4 - Two-layer neural network
#
# **Question**: Use the helper functions you have implemented in the previous assignment to build a 2-layer neural network with the following structure: *LINEAR -> RELU -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:
# ```python
# def initialize_parameters(n_x, n_h, n_y):
# ...
# return parameters
# def linear_activation_forward(A_prev, W, b, activation):
# ...
# return A, cache
# def compute_cost(AL, Y):
# ...
# return cost
# def linear_activation_backward(dA, cache, activation):
# ...
# return dA_prev, dW, db
# def update_parameters(parameters, grads, learning_rate):
# ...
# return parameters
# ```
# In[9]:
### CONSTANTS DEFINING THE MODEL ####
n_x = 12288 # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
# In[10]:
# GRADED FUNCTION: two_layer_model
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
"""
Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
Arguments:
X -- input data, of shape (n_x, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- dimensions of the layers (n_x, n_h, n_y)
num_iterations -- number of iterations of the optimization loop
learning_rate -- learning rate of the gradient descent update rule
print_cost -- If set to True, this will print the cost every 100 iterations
Returns:
parameters -- a dictionary containing W1, W2, b1, and b2
"""
np.random.seed(1)
grads = {}
costs = [] # to keep track of the cost
m = X.shape[1] # number of examples
(n_x, n_h, n_y) = layers_dims
# Initialize parameters dictionary, by calling one of the functions you'd previously implemented
### START CODE HERE ### (≈ 1 line of code)
parameters = initialize_parameters(n_x, n_h, n_y)
### END CODE HERE ###
# Get W1, b1, W2 and b2 from the dictionary parameters.
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
### START CODE HERE ### (≈ 2 lines of code)
A1, cache1 = linear_activation_forward(X, W1, b1, activation = "relu")
A2, cache2 = linear_activation_forward(A1, W2, b2, activation = "sigmoid")
### END CODE HERE ###
# Compute cost
### START CODE HERE ### (≈ 1 line of code)
cost = compute_cost(A2, Y)
### END CODE HERE ###
# Initializing backward propagation
dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
# Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
### START CODE HERE ### (≈ 2 lines of code)
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation = "sigmoid")
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation = "relu")
### END CODE HERE ###
# Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
grads['dW1'] = dW1
grads['db1'] = db1
grads['dW2'] = dW2
grads['db2'] = db2
# Update parameters.
### START CODE HERE ### (approx. 1 line of code)
parameters = update_parameters(parameters, grads, learning_rate)
### END CODE HERE ###
# Retrieve W1, b1, W2, b2 from parameters
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
# Run the cell below to train your parameters. See if your model runs. The cost should be decreasing. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square (⬛) on the upper bar of the notebook to stop the cell and try to find your error.
# In[11]:
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
# **Expected Output**:
# <table>
# <tr>
# <td> **Cost after iteration 0**</td>
# <td> 0.6930497356599888 </td>
# </tr>
# <tr>
# <td> **Cost after iteration 100**</td>
# <td> 0.6464320953428849 </td>
# </tr>
# <tr>
# <td> **...**</td>
# <td> ... </td>
# </tr>
# <tr>
# <td> **Cost after iteration 2400**</td>
# <td> 0.048554785628770206 </td>
# </tr>
# </table>
# Good thing you built a vectorized implementation! Otherwise it might have taken 10 times longer to train this.
#
# Now, you can use the trained parameters to classify images from the dataset. To see your predictions on the training and test sets, run the cell below.
# In[12]:
predictions_train = predict(train_x, train_y, parameters)
# **Expected Output**:
# <table>
# <tr>
# <td> **Accuracy**</td>
# <td> 1.0 </td>
# </tr>
# </table>
# In[13]:
predictions_test = predict(test_x, test_y, parameters)
# **Expected Output**:
#
# <table>
# <tr>
# <td> **Accuracy**</td>
# <td> 0.72 </td>
# </tr>
# </table>
# **Note**: You may notice that running the model on fewer iterations (say 1500) gives better accuracy on the test set. This is called "early stopping" and we will talk about it in the next course. Early stopping is a way to prevent overfitting.
#
# Congratulations! It seems that your 2-layer neural network has better performance (72%) than the logistic regression implementation (70%, assignment week 2). Let's see if you can do even better with an $L$-layer model.
# ## 5 - L-layer Neural Network
#
# **Question**: Use the helper functions you have implemented previously to build an $L$-layer neural network with the following structure: *[LINEAR -> RELU]$\times$(L-1) -> LINEAR -> SIGMOID*. The functions you may need and their inputs are:
# ```python
# def initialize_parameters_deep(layer_dims):
# ...
# return parameters
# def L_model_forward(X, parameters):
# ...
# return AL, caches
# def compute_cost(AL, Y):
# ...
# return cost
# def L_model_backward(AL, Y, caches):
# ...
# return grads
# def update_parameters(parameters, grads, learning_rate):
# ...
# return parameters
# ```
# In[14]:
### CONSTANTS ###
layers_dims = [12288, 20, 7, 5, 1] # 5-layer model
# In[17]:
# GRADED FUNCTION: L_layer_model
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
Arguments:
X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
np.random.seed(1)
costs = [] # keep track of cost
# Parameters initialization.
### START CODE HERE ###
parameters = initialize_parameters_deep(layers_dims)
### END CODE HERE ###
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
### START CODE HERE ### (≈ 1 line of code)
AL, caches = L_model_forward(X, parameters)
### END CODE HERE ###
# Compute cost.
### START CODE HERE ### (≈ 1 line of code)
cost = compute_cost(AL, Y)
### END CODE HERE ###
# Backward propagation.
### START CODE HERE ### (≈ 1 line of code)
grads = L_model_backward(AL, Y, caches)
### END CODE HERE ###
# Update parameters.
### START CODE HERE ### (≈ 1 line of code)
parameters = update_parameters(parameters, grads, learning_rate)
### END CODE HERE ###
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
# You will now train the model as a 5-layer neural network.
#
# Run the cell below to train your model. The cost should decrease on every iteration. It may take up to 5 minutes to run 2500 iterations. Check if the "Cost after iteration 0" matches the expected output below, if not click on the square (⬛) on the upper bar of the notebook to stop the cell and try to find your error.
# In[18]:
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
# **Expected Output**:
# <table>
# <tr>
# <td> **Cost after iteration 0**</td>
# <td> 0.771749 </td>
# </tr>
# <tr>
# <td> **Cost after iteration 100**</td>
# <td> 0.672053 </td>
# </tr>
# <tr>
# <td> **...**</td>
# <td> ... </td>
# </tr>
# <tr>
# <td> **Cost after iteration 2400**</td>
# <td> 0.092878 </td>
# </tr>
# </table>
# In[19]:
pred_train = predict(train_x, train_y, parameters)
# <table>
# <tr>
# <td>
# **Train Accuracy**
# </td>
# <td>
# 0.985645933014
# </td>
# </tr>
# </table>
# In[20]:
pred_test = predict(test_x, test_y, parameters)
# **Expected Output**:
#
# <table>
# <tr>
# <td> **Test Accuracy**</td>
# <td> 0.8 </td>
# </tr>
# </table>
# Congrats! It seems that your 5-layer neural network has better performance (80%) than your 2-layer neural network (72%) on the same test set.
#
# This is good performance for this task. Nice job!
#
# Though in the next course on "Improving deep neural networks" you will learn how to obtain even higher accuracy by systematically searching for better hyperparameters (learning_rate, layers_dims, num_iterations, and others you'll also learn in the next course).
# ## 6) Results Analysis
#
# First, let's take a look at some images the L-layer model labeled incorrectly. This will show a few mislabeled images.
# In[21]:
print_mislabeled_images(classes, test_x, test_y, pred_test)
# **A few type of images the model tends to do poorly on include:**
# - Cat body in an unusual position
# - Cat appears against a background of a similar color
# - Unusual cat color and species
# - Camera Angle
# - Brightness of the picture
# - Scale variation (cat is very large or small in image)
# ## 7) Test with your own image (optional/ungraded exercise) ##
#
# Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that:
# 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
# 2. Add your image to this Jupyter Notebook's directory, in the "images" folder
# 3. Change your image's name in the following code
# 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)!
# In[22]:
## START CODE HERE ##
my_image = "my_image.jpg" # change this to the name of your image file
my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
## END CODE HERE ##
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
my_predicted_image = predict(my_image, my_label_y, parameters)
plt.imshow(image)
print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
# **References**:
#
# - for auto-reloading external module: http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython