-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEulerTransform.cc
167 lines (149 loc) · 5.14 KB
/
EulerTransform.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* tinygraph -- exploring graph conjectures on small graphs
Copyright (C) 2015 Falk Hüffner
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#include "EulerTransform.hh"
namespace EulerTransform {
mpz_class combinations(const mpz_class& n, const mpz_class& k) {
if (k > n)
throw std::domain_error("combinations");
if (k > n / 2)
return combinations(n, n - k);
if (!k.fits_ulong_p())
throw std::domain_error("combinations");
mpz_class r;
mpz_bin_ui(r.get_mpz_t(), n.get_mpz_t(), k.get_ui());
return r;
}
bignum n_multicombinations(bignum n, bignum k) {
if (k == 0)
return 0;
return combinations(k + n - 1, n);
}
// based on http://code.activestate.com/recipes/218332-generator-for-integer-partitions/#c5
// by Tim Peters
void integerPartitions(int n, std::function<void(Set, const std::vector<int>&)> f) {
if (n == 0) {
f({}, {});
return;
}
std::vector<int> ms(n + 1);
ms[n] = 1;
Set keys = {n};
f(keys, ms);
while(keys != Set({1})) {
int reuse;
if (keys.min() == 1) {
keys.discard(1);
reuse = ms[1];
ms[1] = 0;
} else {
reuse = 0;
}
int i = keys.min();
int newcount = --ms[i];
reuse += i;
if (newcount == 0) {
keys.discard(keys.min());
ms[i] = 0;
}
keys.add(--i);
div_t qr = div(reuse, i);
ms[i] = qr.quot;
int r = qr.rem;
if (r) {
ms[r] = 1;
keys.add(r);
}
f(keys, ms);
}
}
std::vector<bignum> transform(const std::vector<bignum>& seq) {
std::vector<bignum> transformed;
for (int n = 0; n < int(seq.size()); ++n) {
bignum count = 0;
integerPartitions(n,
[&count,&seq](Set keys, const std::vector<int>& mult) {
bignum c = 1;
for (auto size : keys)
c *= n_multicombinations(mult[size], seq[size]);
count += c;
});
transformed.push_back(count);
}
return transformed;
}
std::vector<bignum> transform(const std::vector<uint64_t>& s) {
std::vector<bignum> sBig(s.begin(), s.end());
return transform(sBig);
}
// https://oeis.org/A001349
const std::vector<bignum> numConnectedGraphs = {
1_mpz,
1_mpz,
1_mpz,
2_mpz,
6_mpz,
21_mpz,
112_mpz,
853_mpz,
11117_mpz,
261080_mpz,
11716571_mpz,
1006700565_mpz,
164059830476_mpz,
50335907869219_mpz,
29003487462848061_mpz,
31397381142761241960_mpz,
63969560113225176176277_mpz,
245871831682084026519528568_mpz,
1787331725248899088890200576580_mpz,
24636021429399867655322650759681644_mpz,
645465483198722799426731128794502283004_mpz,
32219627385046589818232044119082157323436797_mpz,
3070814262175729723895568454399186829509550171755_mpz,
559943868821088067965169467298102645124904586852569700_mpz,
195704346352067869424144939394112759539046378875336729014803_mpz,
131331197864429267343038461571121231901357546349778703464744110480_mpz,
169487487069103860309498044496181634419481050608589608741506974117661153_mpz,
421259837031894153474761394722982198262661349959958867827522253208309529657428_mpz,
2019295578418395388334710354184231114050311766824615116653385182748332016100781822978_mpz,
18691350703182535102936037539278223408795964939210324175289556058530041603266454027210155407_mpz,
334494297617902927474062588988771420592400340448497175735486787573919763092664433461017585013705594_mpz,
};
std::vector<bignum> nonGraphs(const std::vector<bignum>& seq) {
// https://oeis.org/A000088
static std::vector<bignum> numGraphs = transform(numConnectedGraphs);
if (seq.size() > numGraphs.size())
throw std::domain_error("need more data in EulerTransform::nonGraphs");
std::vector<bignum> result(seq.size());
for (size_t i = 0; i < seq.size(); ++i)
result[i] = numGraphs[i] - seq[i];
return result;
}
std::vector<bignum> nonGraphs(const std::vector<uint64_t>& s) {
std::vector<bignum> sBig(s.begin(), s.end());
return nonGraphs(sBig);
}
std::vector<bignum> connectedNonGraphs(const std::vector<bignum>& seq) {
if (seq.size() > numConnectedGraphs.size())
throw std::domain_error("need more data in EulerTransform::connectedNonGraphs");
std::vector<bignum> result(seq.size());
for (size_t i = 0; i < seq.size(); ++i)
result[i] = numConnectedGraphs[i] - seq[i];
return result;
}
std::vector<bignum> connectedNonGraphs(const std::vector<uint64_t>& s) {
std::vector<bignum> sBig(s.begin(), s.end());
return connectedNonGraphs(sBig);
}
} // namespace EulerTransform