forked from LexiestLeszek/namegen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnamegen.py
115 lines (88 loc) · 4.74 KB
/
namegen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
class NameGen:
def __init__(self):
self.characters = None
self.char_to_ind = None
self.ind_to_char = None
self.fourgrams = None
# Defining the NameGen class with initialization of attributes
def train(self, filename):
# Load dataset and train the model
with open(filename, 'r') as f:
words = f.read().splitlines()
# Open and read the file to get a list of words, each word starts from a new line, that's whe we need splitlines()
self.characters = sorted(list(set(''.join(words))))
print(f"Vocab Tokens:\n {self.characters}")
# Create vocabulary - get and sort unique characters in the dataset (basically alphabet)
vocab_len = len(self.characters) + 1
print(f"Vocab Length: {vocab_len}")
# Calculate the vocabulary length (characters) + 1 (for the dot) and print it
self.char_to_ind = {}
for i, s in enumerate(self.characters):
self.char_to_ind[s] = i + 1
# Create character-to-index mapping (key-value pairs)
self.char_to_ind['.'] = 0
# The dot represents marker for the start and end of a name
print(f"Character-to-Index mapping:\n {self.char_to_ind}")
# Print the mapping to showcase how it works
self.ind_to_char = {}
for s, i in self.char_to_ind.items():
self.ind_to_char[i] = s
# Create index-to-character mapping (key-value pairs), basically the reverse of char_to_ind
self.fourgrams = torch.zeros((vocab_len, vocab_len, vocab_len, vocab_len), dtype=torch.int32)
# Initialize a tensor to store frequency of four characters occurring together
# Size of each axis is dynamic and based on the vocab length
# dtype=torch.int32 means that the tensor will store integers using 32 bits per element
# Implementation of torch.zeros without pyTorch:
# self.fourgrams = [[[[0 for _ in range(vocab_len)] for _ in range(vocab_len)] for _ in range(vocab_len)] for _ in range(vocab_len)]
print("Trarining starts ...")
for word in words:
chs = ['.', '.', '.'] + list(word) + ['.', '.', '.']
# Add padding dots to the word
# Three dots (sentinel characters) act as markers indicating the start and end of a name
for ch1, ch2, ch3, ch4 in zip(chs, chs[1:], chs[2:], chs[3:]):
ix1 = self.char_to_ind[ch1]
ix2 = self.char_to_ind[ch2]
ix3 = self.char_to_ind[ch3]
ix4 = self.char_to_ind[ch4]
self.fourgrams[ix1, ix2, ix3, ix4] += 1
# Populate the fourgrams tensor with frequencies
# self.fourgrams[1][2][3][4] would contain the frequency of occurrence of the 'abcd' sequence
print("Training finished!")
#torch.save(self.fourgrams, "namegen_weights.pt")
# Save the trained model weights
def generate_names(self, num_names=1):
# Passing the number of words to generate
for _ in range(num_names):
name = []
# Empty list for a name, since every element would be generated
ix1 = ix2 = ix3 = 0
# Initialize indices for generating names
while True:
p = self.fourgrams[ix1, ix2, ix3].float()
p = p / p.sum()
# Calculate probabilities of the next character and normalize them
probs_flat = p.view(-1)
# Collapse all dimensions into a single dimension
adjusted_ix = torch.multinomial(probs_flat, num_samples=1)
# Randomly sample the next character index based on the input probabilities provided
out = self.ind_to_char[adjusted_ix.item()]
# Use ind_to_char to take sample a character (letter) by its index
name.append(out)
# Append the sampled character to the name
ix1 = ix2
ix2 = ix3
ix3 = adjusted_ix
# Update indices for next iteration
if adjusted_ix == 0:
break
# If the sampled character is a dot - stop
name = ''.join(name[:-1])
# Remove the last character from the name list (the dot) and concatenate the remaining characters into string
name_capitalized = name[0].upper() + name[1:]
print(name_capitalized)
# Capitalize the first letter of the generated name and print it
# Usage
model = NameGen()
model.train('names.txt')
model.generate_names(num_names=10)