Error related to raw_sample_filter in _create_data_loader #263
Unanswered
mouryarahul
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hi,
I'm trying to run
python train_unet_demo.py \
--mode test \
--test_split test \
--challenge singlecoil \
--data_path ../../../FastMRI_DATASET/knee_singlecoil_train/ \
--resume_from_checkpoint unet/unet_demo/checkpoints/epoch=1-step=69484.ckpt
where
../../../FastMRI_DATASET/knee_singlecoil_train/
contains all three folders:singlecoil_test
,singlecoil_train
andsinglecoil_val
However, I'm getting an error related to
raw_sample_filter
in the case of the test dataset. Maybe I am missing something or doing something silly. Can someone please point out the mistake? Thanks!Info about my environment:
PyTorch version: 1.12.0+cu116
Is debug build: False
CUDA used to build PyTorch: 11.6
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04 LTS (x86_64)
GCC version: (Ubuntu 11.2.0-19ubuntu1) 11.2.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1070
Nvidia driver version: 515.65.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Versions of relevant libraries:
[pip3] numpy==1.22.3
[pip3] pytorch-lightning==1.7.2
[pip3] torch==1.12.0+cu116
[pip3] torchaudio==0.12.0+cu116
[pip3] torchmetrics==0.9.2
[pip3] torchvision==0.13.0+cu116
[conda] blas 1.0 mkl
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py310h7f8727e_0
[conda] mkl_fft 1.3.1 py310hd6ae3a3_0
[conda] mkl_random 1.2.2 py310h00e6091_0
[conda] numpy 1.22.3 py310hfa59a62_0
[conda] numpy-base 1.22.3 py310h9585f30_0
[conda] pytorch-lightning 1.7.2 pypi_0 pypi
[conda] torch 1.12.0+cu116 pypi_0 pypi
[conda] torchaudio 0.12.0+cu116 pypi_0 pypi
[conda] torchmetrics 0.9.2 pypi_0 pypi
[conda] torchvision 0.13.0+cu116 pypi_0 pypi
The full error msg:
Global seed set to 42
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/torchmetrics/utilities/prints.py:36: UserWarning: Torchmetrics v0.9 introduced a new argument class property called
full_state_update
that has not been set for this class (DistributedMetricSum). The property determines ifupdate
by default needs access to the full metric state. If this is not the case, significant speedups can be achieved and we recommend setting this toFalse
. We provide an checking functionfrom torchmetrics.utilities import check_forward_no_full_state
that can be used to check if thefull_state_update=True
(old and potential slower behaviour, default for now) or iffull_state_update=False
can be used safely.warnings.warn(*args, **kwargs)
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:446: LightningDeprecationWarning: Setting
Trainer(gpus=1)
is deprecated in v1.7 and will be removed in v2.0. Please useTrainer(accelerator='gpu', devices=1)
instead.rank_zero_deprecation(
/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: Setting
Trainer(resume_from_checkpoint=)
is deprecated in v1.5 and will be removed in v1.7. Please passTrainer.fit(ckpt_path=)
directly instead.rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Global seed set to 42
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
distributed_backend=nccl
All distributed processes registered. Starting with 1 processes
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Traceback (most recent call last):
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri_examples/unet/train_unet_demo.py", line 191, in
run_cli()
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri_examples/unet/train_unet_demo.py", line 187, in run_cli
cli_main(args)
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri_examples/unet/train_unet_demo.py", line 75, in cli_main
trainer.test(model, datamodule=data_module)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in test
return self._call_and_handle_interrupt(self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 648, in _call_and_handle_interrupt
return self.strategy.launcher.launch(trainer_fn, *args, trainer=self, **kwargs)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 93, in launch
return function(*args, **kwargs)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 911, in _test_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1168, in _run
results = self._run_stage()
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1251, in _run_stage
return self._run_evaluate()
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1291, in _run_evaluate
self._evaluation_loop._reload_evaluation_dataloaders()
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 234, in _reload_evaluation_dataloaders
self.trainer.reset_test_dataloader()
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1944, in reset_test_dataloader
self.num_test_batches, self.test_dataloaders = self._data_connector._reset_eval_dataloader(
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 348, in _reset_eval_dataloader
dataloaders = self._request_dataloader(mode)
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 436, in _request_dataloader
dataloader = source.dataloader()
File "/home/rahul/anaconda3/envs/pytorch/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 513, in dataloader
return method()
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri/pl_modules/data_module.py", line 325, in test_dataloader
return self._create_data_loader(
File "/media/rahul/DATA/WorkSpace/Multimodal-Data-Processing/Projects/fastMRI/fastmri/pl_modules/data_module.py", line 262, in _create_data_loader
raw_sample_filter=raw_sample_filter,
UnboundLocalError: local variable 'raw_sample_filter' referenced before assignment
Beta Was this translation helpful? Give feedback.
All reactions