-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: Pull Request resolved: #3154 Using the benchmark to find Pareto optimal indices, in this case on BigANN as an example. Separately optimize the coarse quantizer and the vector codec and use Pareto optimal configurations to construct IVF indices, which are then retested at various scales. See `optimize()` in `optimize.py` as the main function driving the process. The results can be interpreted with `bench_fw_notebook.ipynb`, which allows: * filtering by maximum code size * maximum time * minimum accuracy * space or time Pareto optimal options * and visualize the results and output them as a table. This version is intentionally limited to IVF(Flat|HNSW),PQ|SQ indices... Reviewed By: mdouze Differential Revision: D51781670 fbshipit-source-id: 2c0f800d374ea845255934f519cc28095c00a51f
- Loading branch information
1 parent
75ae0bf
commit 1d0e8d4
Showing
8 changed files
with
1,318 additions
and
750 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.