-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain.py
286 lines (232 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
from collections import OrderedDict
from functools import partial
from typing import Dict, List, Optional, Union
from multiprocessing import Pool
import hydra
import torch
from hydra.utils import instantiate, get_original_cwd
from accelerate import Accelerator
from omegaconf import DictConfig, OmegaConf
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.vis.plotly_vis import plot_scene
from util.metric import camera_to_rel_deg, calculate_auc
from util.train_util import (
DynamicBatchSampler,
VizStats,
WarmupCosineRestarts,
get_co3d_dataset,
plotly_scene_visualization,
set_seed_and_print,
view_color_coded_images_for_visdom,
)
@hydra.main(config_path="../cfgs/", config_name="default_train")
def train_fn(cfg: DictConfig):
OmegaConf.set_struct(cfg, False)
accelerator = Accelerator(even_batches=False, device_placement=False)
# Print configuration and accelerator state
accelerator.print("Model Config:", OmegaConf.to_yaml(cfg), accelerator.state)
torch.backends.cudnn.benchmark = cfg.train.cudnnbenchmark if not cfg.debug else False
if cfg.debug:
accelerator.print("********DEBUG MODE********")
torch.backends.cudnn.deterministic = True
set_seed_and_print(cfg.seed)
# Visualization setup
if accelerator.is_main_process:
try:
from visdom import Visdom
viz = Visdom()
# cams_show = {"ours_pred": pred_cameras, "ours_pred_aligned": pred_cameras_aligned, "gt_cameras": gt_cameras}
# fig = plot_scene({f"{folder_path}": cams_show})
# viz.plotlyplot(fig, env="visual", win="cams")
except:
print("Warning: please check your visdom connection for visualization")
# Data loading
dataset, eval_dataset = get_co3d_dataset(cfg)
dataloader = get_dataloader(cfg, dataset)
eval_dataloader = get_dataloader(cfg, eval_dataset, is_eval=True)
accelerator.print("length of train dataloader is: ", len(dataloader))
accelerator.print("length of eval dataloader is: ", len(eval_dataloader))
# Model instantiation
model = instantiate(cfg.MODEL, _recursive_=False)
model = model.to(accelerator.device)
# Optimizer and Scheduler
optimizer = torch.optim.AdamW(params=model.parameters(), lr=cfg.train.lr)
lr_scheduler = WarmupCosineRestarts(
optimizer=optimizer, T_0=cfg.train.restart_num, iters_per_epoch=len(dataloader), warmup_ratio=0.1
)
# torch.optim.lr_scheduler.OneCycleLR() can achieve similar performance
# Accelerator setup
model, dataloader, optimizer, lr_scheduler = accelerator.prepare(model, dataloader, optimizer, lr_scheduler)
start_epoch = 0
if cfg.train.resume_ckpt:
checkpoint = torch.load(cfg.train.resume_ckpt)
try:
model.load_state_dict(prefix_with_module(checkpoint), strict=True)
except:
model.load_state_dict(checkpoint, strict=True)
accelerator.print(f"Successfully resumed from {cfg.train.resume_ckpt}")
# metrics to record
stats = VizStats(("loss", "lr", "sec/it", "Auc_30", "Racc_5", "Racc_15", "Racc_30", "Tacc_5", "Tacc_15", "Tacc_30"))
num_epochs = cfg.train.epochs
for epoch in range(start_epoch, num_epochs):
stats.new_epoch()
set_seed_and_print(cfg.seed + epoch)
# Evaluation
if (epoch != 0) and (epoch % cfg.train.eval_interval == 0):
# if (epoch%cfg.train.eval_interval ==0):
accelerator.print(f"----------Start to eval at epoch {epoch}----------")
_train_or_eval_fn(
model,
eval_dataloader,
cfg,
optimizer,
stats,
accelerator,
lr_scheduler,
training=False,
visualize=False,
)
accelerator.print(f"----------Finish the eval at epoch {epoch}----------")
else:
accelerator.print(f"----------Skip the eval at epoch {epoch}----------")
# Training
accelerator.print(f"----------Start to train at epoch {epoch}----------")
_train_or_eval_fn(
model, dataloader, cfg, optimizer, stats, accelerator, lr_scheduler, training=True, visualize=False
)
accelerator.print(f"----------Finish the train at epoch {epoch}----------")
if accelerator.is_main_process:
lr = lr_scheduler.get_last_lr()[0]
accelerator.print(f"----------LR is {lr}----------")
accelerator.print(f"----------Saving stats to {cfg.exp_name}----------")
stats.update({"lr": lr}, stat_set="train")
stats.plot_stats(viz=viz, visdom_env=cfg.exp_name)
accelerator.print(f"----------Done----------")
if epoch % cfg.train.ckpt_interval == 0:
accelerator.wait_for_everyone()
ckpt_path = os.path.join(cfg.exp_dir, f"ckpt_{epoch:06}")
accelerator.print(f"----------Saving the ckpt at epoch {epoch} to {ckpt_path}----------")
accelerator.save_state(output_dir=ckpt_path)
if accelerator.is_main_process:
stats.save(cfg.exp_dir + "stats")
accelerator.wait_for_everyone()
accelerator.save_state(output_dir=os.path.join(cfg.exp_dir, f"ckpt_{epoch:06}"))
return True
def _train_or_eval_fn(
model, dataloader, cfg, optimizer, stats, accelerator, lr_scheduler, training=True, visualize=False
):
if training:
model.train()
else:
model.eval()
time_start = time.time()
max_it = len(dataloader)
stat_set = "train" if training else "eval"
for step, batch in enumerate(dataloader):
# data preparation
images = batch["image"].to(accelerator.device)
translation = batch["T"].to(accelerator.device)
rotation = batch["R"].to(accelerator.device)
fl = batch["fl"].to(accelerator.device)
pp = batch["pp"].to(accelerator.device)
if training and cfg.train.batch_repeat > 0:
# repeat samples by several times
# to accelerate training
br = cfg.train.batch_repeat
gt_cameras = PerspectiveCameras(
focal_length=fl.reshape(-1, 2).repeat(br, 1),
R=rotation.reshape(-1, 3, 3).repeat(br, 1, 1),
T=translation.reshape(-1, 3).repeat(br, 1),
device=accelerator.device,
)
batch_size = len(images) * br
else:
gt_cameras = PerspectiveCameras(
focal_length=fl.reshape(-1, 2),
R=rotation.reshape(-1, 3, 3),
T=translation.reshape(-1, 3),
device=accelerator.device,
)
batch_size = len(images)
if training:
predictions = model(images, gt_cameras=gt_cameras, training=True, batch_repeat=cfg.train.batch_repeat)
predictions["loss"] = predictions["loss"].mean()
loss = predictions["loss"]
else:
with torch.no_grad():
predictions = model(images, training=False)
pred_cameras = predictions["pred_cameras"]
# compute metrics
rel_rangle_deg, rel_tangle_deg = camera_to_rel_deg(pred_cameras, gt_cameras, accelerator.device, batch_size)
# metrics to report
Racc_5 = (rel_rangle_deg < 5).float().mean()
Racc_15 = (rel_rangle_deg < 15).float().mean()
Racc_30 = (rel_rangle_deg < 30).float().mean()
Tacc_5 = (rel_tangle_deg < 5).float().mean()
Tacc_15 = (rel_tangle_deg < 15).float().mean()
Tacc_30 = (rel_tangle_deg < 30).float().mean()
# also called mAA in some literature
Auc_30 = calculate_auc(rel_rangle_deg, rel_tangle_deg, max_threshold=30)
predictions["Racc_5"] = Racc_5
predictions["Racc_15"] = Racc_15
predictions["Racc_30"] = Racc_30
predictions["Tacc_5"] = Tacc_5
predictions["Tacc_15"] = Tacc_15
predictions["Tacc_30"] = Tacc_30
predictions["Auc_30"] = Auc_30
if visualize:
# an example if trying to conduct visualization by visdom
frame_num = images.shape[1]
camera_dict = {"pred_cameras": {}, "gt_cameras": {}}
for visidx in range(frame_num):
camera_dict["pred_cameras"][visidx] = pred_cameras[visidx]
camera_dict["gt_cameras"][visidx] = gt_cameras[visidx]
fig = plotly_scene_visualization(camera_dict, frame_num)
viz.plotlyplot(fig, env=cfg.exp_name, win="cams")
show_img = view_color_coded_images_for_visdom(images[0])
viz.images(show_img, env=cfg.exp_name, win="imgs")
stats.update(predictions, time_start=time_start, stat_set=stat_set)
if step % cfg.train.print_interval == 0:
accelerator.print(stats.get_status_string(stat_set=stat_set, max_it=max_it))
if training:
optimizer.zero_grad()
accelerator.backward(loss)
if cfg.train.clip_grad > 0 and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), cfg.train.clip_grad)
optimizer.step()
lr_scheduler.step()
return True
def get_dataloader(cfg, dataset, is_eval=False):
"""Utility function to get DataLoader."""
prefix = "eval" if is_eval else "train"
batch_sampler = DynamicBatchSampler(
len(dataset),
dataset_len=getattr(cfg.train, f"len_{prefix}"),
max_images=cfg.train.max_images // (2 if is_eval else 1),
images_per_seq=cfg.train.images_per_seq,
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_sampler=batch_sampler,
num_workers=cfg.train.num_workers,
pin_memory=cfg.train.pin_memory,
persistent_workers=cfg.train.persistent_workers,
)
dataloader.batch_sampler.drop_last = True
dataloader.batch_sampler.sampler = dataloader.batch_sampler
return dataloader
def prefix_with_module(checkpoint):
prefixed_checkpoint = OrderedDict()
for key, value in checkpoint.items():
prefixed_key = "module." + key
prefixed_checkpoint[prefixed_key] = value
return prefixed_checkpoint
if __name__ == "__main__":
train_fn()