Skip to content

MobileLLM Optimizing Sub-billion Parameter Language Models for On-Device Use Cases. In ICML 2024.

License

Notifications You must be signed in to change notification settings

facebookresearch/MobileLLM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MobileLLM

This repository contains the training code of MobileLLM introduced in our work: "MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases", published in ICML 2024.

In this work, we comprehensively consider multiple design factors to obtain high-quality LLMs with fewer than a billion parameters. We integrated (1) SwiGLU activation function, (2) deep and thin architectures, (3) embedding sharing, (4) grouped-query attention to build MobileLLM. MobileLLM-125M/350M attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M SoTA models on zero-shot commonsense reasoning tasks. In our updated version, we further demonstrate that our design philosophy scales effectively to larger models, with SoTA results for MobileLLM-600M/1B/1.5B.

News

  • Oct 30, 2024: 🚀 MobileLLM models are publicly available on GitHub and HuggingFace

Citation

If you find our code useful for your research, please consider citing:

@article{liu2024mobilellm,
    title={MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases},
    author={Liu, Zechun and Zhao, Changsheng and Iandola, Forrest and Lai, Chen and Tian, Yuandong and Fedorov, Igor and Xiong, Yunyang and Chang, Ernie and Shi, Yangyang and Krishnamoorthi, Raghuraman and others},
    journal={arXiv preprint arXiv:2402.14905},
    year={2024}
}

Run

Step 1. Requirements:

  • python 3.9, pytorch >= 2.0
  • pip install -r requirement.txt

Step 2. Data preprocessing

Dividing a tokenized dataset or tokenize your own dataset, and even distribute it across the total number of training nodes, where each node comprises 1x8 GPUs. Next, organize the data into the following structure:

  • basepath
    • 1
      • xxx.jsonl
    • 2
      • xxx.jsonl
    • ...
    • #nodes
      • xxx.jsonl

Each line of a jsonl file is a key-value pair of tokenized data {"token_ids": [1,2,3,4,...]}.

Our training code is compatible with the data pre-processing method in https://github.com/LLM360/amber-data-prep.

Step 3. Training script

The script pretrain.sh is provided to initiate training on a 1x8 node setup using torchrun. This script can be modified to adjust the --nnodes parameter and other settings to suit different multi-node configurations, such as those using slurm or torchx. The learning rate in the script is for 1x8 node with a batch size of 32. If you increase the number of nodes or the batch size, you need to increase the learning rate linearly.

Steps to run:

  • In pretrain.sh file, specify the --train_data_local_path to the pre-processed data in Step 2 and --input_model_filename to ./configs/{model_size}/.
  • Run bash pretrain.sh

Evaluation on Wiki

Download the models here and update the checkpoint path in eval.sh

  • Run bash eval.sh

Training cost

It takes the following number of days to train MobileLLM on 1T tokens using 32 NVIDIA A100 80G GPUs.

125M 350M 600M 1B 1.5B
~3 days ~6 days ~8 days ~12 days ~18 days

Results on Zero-shot Common Sense Reasoning tasks

MobileLLM-125M

model boolq piqa siqa hellaswag winogrande arc_easy arc_challenge obqa avg.
OPT-125M 41.3 25.2 57.5 62.0 41.9 31.1 31.2 50.8 42.6
GPT-neo-125M 40.7 24.8 61.3 62.5 41.9 29.7 31.6 50.7 42.9
Pythia-160M 40.0 25.3 59.5 62.0 41.5 29.9 31.2 50.9 42.5
MobileLLM-125M 43.9 27.1 60.2 65.3 42.4 38.9 39.5 53.1 46.3
MobileLLM-LS-125M 45.8 28.7 60.4 65.7 42.9 39.5 41.1 52.1 47.0

MobileLLM-350M

model boolq piqa siqa hellaswag winogrande arc_easy arc_challenge obqa avg.
OPT-350M 41.9 25.7 54.0 64.8 42.6 36.2 33.3 52.4 43.9
Pythia-410M 47.1 30.3 55.3 67.2 43.1 40.1 36.2 53.4 46.6
MobileLLM-350M 53.8 33.5 62.4 68.6 44.7 49.6 40.0 57.6 51.3
MobileLLM-LS-350M 54.4 32.5 62.8 69.8 44.1 50.6 45.8 57.2 52.1

MobileLLM-600M

model boolq piqa siqa hellaswag winogrande arc_easy arc_challenge obqa avg.
Qwen1.5-500M 54.7 32.1 46.9 68.9 46.0 48.8 37.7 55.0 48.8
BLOOM-560M 43.7 27.5 53.7 65.1 42.5 36.5 32.6 52.2 44.2
MobiLlama-800M 52.0 31.7 54.6 73.0 43.3 52.3 42.5 56.3 50.7
MobileLLM-600M 58.1 35.8 61.0 72.3 44.9 55.9 47.9 58.6 54.3

MobileLLM-1B

model boolq piqa siqa hellaswag winogrande arc_easy arc_challenge obqa avg.
Pythia-1B 49.9 30.4 58.7 69.2 43.3 47.4 38.6 52.2 48.7
MobiLlama-1B 59.7 38.4 59.2 74.5 44.9 62.0 43.7 59.0 55.2
Falcon-1B 59.5 38.4 63.9 74.6 44.6 62.9 45.6 60.9 56.3
BLOOM-1.1B 47.6 27.3 58.6 67.0 42.4 42.2 36.6 53.8 46.9
TinyLlama-1.1B 59.2 37.1 58.1 72.9 43.9 59.1 44.7 58.8 54.2
MobileLLM-1B 63.0 39.0 66.7 74.4 45.0 61.4 46.8 62.3 57.3

MobileLLM-1.5B

model boolq piqa siqa hellaswag winogrande arc_easy arc_challenge obqa avg.
GPT-neo-1.3B 51.3 33.0 61.8 70.9 43.7 48.6 41.2 54.5 50.6
OPT-1.3B 54.4 31.7 58.4 71.5 44.7 53.7 44.6 59.1 52.3
BLOOM-1.7B 50.9 31.2 61.7 70.0 43.2 47.2 36.2 56.1 49.6
Qwen1.5-1.8B 61.1 36.5 68.3 74.1 47.2 60.4 42.9 61.2 56.5
GPT-neo-2.7B 55.8 34.3 62.4 72.9 43.6 55.6 40.0 57.9 52.8
OPT-2.7B 56.6 34.6 61.8 74.5 45.6 60.2 48.2 59.6 55.1
Pythia-2.8B 59.4 38.9 66.1 73.8 44.5 59.6 45.0 59.4 55.8
BLOOM-3B 55.1 33.6 62.1 70.5 43.2 53.9 41.6 58.2 52.3
MobileLLM-1.5B 67.5 40.9 65.7 74.8 46.4 64.5 50.5 64.7 59.4

Acknowledgement

This code is partially based on Hugging Face transformer repo.

Contact

Zechun Liu, Meta Inc (zechunliu at meta dot com)

Changsheng Zhao, Meta Inc (cszhao at meta dot com)

Relevant Projects

SpinQuant: LLM Quantization with Learned Rotations [Paper] [Code]

LLM-QAT: Data-Free Quantization Aware Training for Large Language Models [Paper] [Code]

License

MobileLLM is CC-BY-NC 4.0 licensed as of now.

About

MobileLLM Optimizing Sub-billion Parameter Language Models for On-Device Use Cases. In ICML 2024.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published