-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplot_toy_scatter.py
205 lines (180 loc) · 6.74 KB
/
plot_toy_scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import matplotlib
from matplotlib.colors import ListedColormap
import numpy as np
import torch
import torch.utils.data
from models import ToyNet
from parse import parse_json_to_df
from datasets import Toy
import matplotlib.pyplot as plt
from torch import FloatTensor as FT
import seaborn as sns
from tqdm import tqdm
import itertools
def generate_heatmap_plane(X):
xlim = np.array([-2, 2])
ylim = np.array([-2, 2])
n = 200
d1, d2 = torch.meshgrid(
[torch.linspace(xlim[0], xlim[1], n), torch.linspace(ylim[0], ylim[1], n)]
)
heatmap_plane = torch.stack((d1.flatten(), d2.flatten()), dim=1)
# below, we compute the distance of each point to the training datapoints.
# if the distance is less than 1e-3, that point used the noise dimensions
# of the closest training point.
# 10000 x 300
dists = (heatmap_plane[:, 0:1] - FT(X[:, 0:1].T)) ** 2 + (
heatmap_plane[:, 1:2] - FT(X[:, 1:2].T)
) ** 2
noise_dims = FT(X)[torch.argmin(dists, 1)][:, 2:] * (
dists.min(1)[0] < 0.001
).unsqueeze(1)
return torch.cat([heatmap_plane, noise_dims], 1)
def load_model(path):
state_dict = torch.load(path)
gammas = [
state_dict["model"]["network.gammas"].squeeze()[i].item() for i in range(3)
]
model = torch.nn.ModuleDict({"network": ToyNet(1202, gammas)})
model.load_state_dict(state_dict["model"])
model = model.network
model.to(DEVICE)
return model
def plot(
exps,
all_train_envs,
all_hm,
gammas,
heatmap_plane,
error_df,
filename="toy_exp",
):
heatmap = all_hm.mean(1)
matplotlib.rcParams["contour.negative_linestyle"] = "solid"
cm = ListedColormap(["#C82506", "#0365C0"])
plt.rc("font", size=18, family="Times New Roman")
# plt.figure(figsize=(16, 4.5))
fig, axs = plt.subplots(2, len(exps), figsize=(4 * len(exps), 8))
n = int(np.sqrt(heatmap_plane.shape[0]))
hmp_x = heatmap_plane[:, 0].detach().cpu().numpy().reshape(n, n)
hmp_y = heatmap_plane[:, 1].detach().cpu().numpy().reshape(n, n)
hma = heatmap.reshape(-1, n, n).sigmoid()
for i in range(len(exps)):
ax = axs[0, i] if len(exps) > 1 else axs[0]
vmin, vmax = hma[i, -1, -1], hma[i, 1,1]
delta = vmax-vmin
vmin, vmax = vmin-0.25*delta, vmax+0.25*delta
cm = plt.cm.RdBu.copy()
cm.set_under("#C82506")
cm.set_over("#0365C0")
p = ax.contourf(
hmp_x,
hmp_y,
hma[i],
np.linspace(vmin, vmax, 20),
cmap=cm,
alpha=0.8,
vmin=vmin,
vmax=vmax,
extend="both"
)
ax.contour(
hmp_x, hmp_y, hma[i], [0.5], antialiased=True, linewidths=1.0, colors="k"
)
ax.set_title(exps[i].upper())
ax.set_xlabel("x spu * gamma spu")
ax.set_ylabel("x core * gamma core")
ax.text(-1.7, 1.7, "I", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k")
ax.text(1.7, 1.7, "II", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k")
ax.text(-1.7, -1.7, "III", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k")
ax.text(1.7, -1.7, "IV", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k")
ax.axhline(y=0, ls="--", lw=0.7, color="k", alpha=0.5)
ax.axvline(x=0, ls="--", lw=0.7, color="k", alpha=0.5)
# ax.xaxis.set_major_locator(plt.NullLocator())
# ax.yaxis.set_major_locator(plt.NullLocator())
ax.set_xlim(np.array([-2, 2]))
ax.set_ylim(np.array([-2, 2]))
ticks = [-2, -1, 0, 1, 2]
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels([int(t * gammas[0]) for t in ticks])
ax.set_yticklabels([int(t * gammas[1]) for t in ticks])
for X, y in all_train_envs:
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm, edgecolors='none', s=5, alpha=0.3)
ax_ = axs[1, i] if len(exps) > 1 else axs[1]
l = sns.lineplot(
data=error_df.groupby("method").get_group(exps[i]),
x="epoch",
y="error",
hue="phase",
ax=ax_,
ci=90
)
handles, labels = l.get_legend_handles_labels()
l.get_legend().remove()
ax_.grid(color="k", linestyle="--", linewidth=0.5, alpha=0.3)
ax_.set_title(exps[i].upper())
# ax_.set_xscale("log")
ax_.set_xlabel("Iterations")
ax_.set_ylabel("worst-group-accuracy")
ax_.set_ylim([-0.005, 1.005])
lg = fig.legend(handles, labels, loc='lower center', ncol=3, bbox_to_anchor=(0.5, -0.05))
fig.tight_layout()
plt.savefig(f"figures/{filename}.pdf",bbox_extra_artists=(lg,), bbox_inches='tight')
plt.savefig(f"figures/{filename}.png",bbox_extra_artists=(lg,), bbox_inches='tight')
if __name__ == "__main__":
seeds = 1
n_samples = 1000
dim_noise = 1200
DEVICE = 0
gammas = [4, 1.0, 20.0]
exps = ["erm", "subg", "rwg"]
df = parse_json_to_df(["toy_sweep"])
idx = [
"method",
"lr",
"weight_decay",
"batch_size",
"init_seed",
"epoch",
"file_path",
]
# df.set_index(idx)
def get_ploting_params(df):
models = {
(exp, seed): load_model(path.replace(".pt", ".best.pt"))
for exp, seed, path in (
df.groupby(["method", "init_seed", "file_path"]).groups.keys()
)
}
df = (
df.melt(
id_vars=idx,
value_vars=["min_acc_va", "min_acc_te", "min_acc_tr"],
var_name="phase",
value_name="error",
)
.replace({"min_acc_va": "valid", "min_acc_te": "test", "min_acc_tr": "train"})
.reset_index()
)
datasets = []
for i in range(seeds):
torch.manual_seed(i)
np.random.seed(i)
d = Toy("tr")
datasets.append((d.x, d.y))
all_hm = torch.zeros(len(exps), seeds, 200 * 200)
for exp_i, exp in enumerate(exps):
for i in range(seeds):
heatmap_plane = generate_heatmap_plane(datasets[i][0]).to(DEVICE)
all_hm[exp_i, i] = models[(exp, i)](heatmap_plane).detach().cpu()
return exps, datasets, all_hm, gammas, heatmap_plane, df
groups = df.groupby(
["lr", "weight_decay", "batch_size", "gamma_spu", "gamma_core", "gamma_noise"]
)
for (lr, wd, bs, gms, gmc, gmn), g_df in groups:
plot(
*get_ploting_params(g_df),
filename=f"toy_sweep_lr_{lr}_wd_{wd}_bs_{bs}_gms_{gms}_gmc_{gmc}_gmn_{gmn}",
)