forked from hugochan/KATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
63 lines (49 loc) · 2.23 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
'''
Created on Jan, 2017
@author: hugo
'''
from __future__ import absolute_import
import timeit
import argparse
from os import path
import numpy as np
from autoencoder.core.vae import VarAutoEncoder, load_vae_model, save_vae_model
from autoencoder.preprocessing.preprocessing import load_corpus, doc2vec, vocab_weights
from autoencoder.utils.op_utils import vecnorm
from autoencoder.utils.io_utils import dump_json
def train(args):
corpus = load_corpus(args.input)
n_vocab, docs = len(corpus['vocab']), corpus['docs']
corpus.clear() # save memory
X_docs = []
for k in docs.keys():
X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
del docs[k]
np.random.seed(0)
np.random.shuffle(X_docs)
# X_docs_noisy = corrupted_matrix(np.r_[X_docs], 0.1)
n_val = args.n_val
# X_train = np.r_[X_docs[:-n_val]]
# X_val = np.r_[X_docs[-n_val:]]
X_train = np.r_[X_docs[:-n_val]]
del X_docs[:-n_val]
X_val = np.r_[X_docs]
del X_docs
start = timeit.default_timer()
vae = VarAutoEncoder(n_vocab, args.n_dim, comp_topk=args.comp_topk, ctype=args.ctype, save_model=args.save_model)
vae.fit([X_train, X_train], [X_val, X_val], nb_epoch=args.n_epoch, batch_size=args.batch_size)
print 'runtime: %ss' % (timeit.default_timer() - start)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, required=True, help='path to the input corpus file')
parser.add_argument('-nd', '--n_dim', nargs='*', type=int, help='num of dimensions')
parser.add_argument('-ne', '--n_epoch', type=int, default=100, help='num of epoches (default 100)')
parser.add_argument('-bs', '--batch_size', type=int, default=100, help='batch size (default 100)')
parser.add_argument('-nv', '--n_val', type=int, default=1000, help='size of validation set (default 1000)')
parser.add_argument('-ck', '--comp_topk', nargs='*', type=int, help='competitive topk')
parser.add_argument('-ctype', '--ctype', type=str, help='competitive type (kcomp, ksparse, gated_comp)')
parser.add_argument('-sm', '--save_model', type=str, default='model', help='path to the output model')
args = parser.parse_args()
train(args)
if __name__ == '__main__':
main()