forked from catid/cm256
-
Notifications
You must be signed in to change notification settings - Fork 2
/
gf256.cpp
790 lines (651 loc) · 23.7 KB
/
gf256.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*
Copyright (c) 2015 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of CM256 nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "gf256.h"
// Context object for GF(256) math
gf256_ctx GF256Ctx;
static bool Initialized = false;
//-----------------------------------------------------------------------------
// Generator Polynomial
// There are only 16 irreducible polynomials for GF(256)
static const int GF256_GEN_POLY_COUNT = 16;
static const uint8_t GF256_GEN_POLY[GF256_GEN_POLY_COUNT] = {
0x8e, 0x95, 0x96, 0xa6, 0xaf, 0xb1, 0xb2, 0xb4,
0xb8, 0xc3, 0xc6, 0xd4, 0xe1, 0xe7, 0xf3, 0xfa,
};
static const int DefaultPolynomialIndex = 3;
// Select which polynomial to use
static void gf255_poly_init(int polynomialIndex)
{
if (polynomialIndex < 0 || polynomialIndex >= GF256_GEN_POLY_COUNT)
{
polynomialIndex = 0;
}
GF256Ctx.Polynomial = (GF256_GEN_POLY[polynomialIndex] << 1) | 1;
}
//-----------------------------------------------------------------------------
// Exponential and Log Tables
// Construct EXP and LOG tables from polynomial
static void gf256_explog_init()
{
unsigned poly = GF256Ctx.Polynomial;
uint8_t* exptab = GF256Ctx.GF256_EXP_TABLE;
uint16_t* logtab = GF256Ctx.GF256_LOG_TABLE;
logtab[0] = 512;
exptab[0] = 1;
for (unsigned jj = 1; jj < 255; ++jj)
{
unsigned next = (unsigned)exptab[jj - 1] * 2;
if (next >= 256) next ^= poly;
exptab[jj] = static_cast<uint8_t>( next );
logtab[exptab[jj]] = static_cast<uint16_t>( jj );
}
exptab[255] = exptab[0];
logtab[exptab[255]] = 255;
for (unsigned jj = 256; jj < 2 * 255; ++jj)
{
exptab[jj] = exptab[jj % 255];
}
exptab[2 * 255] = 1;
for (unsigned jj = 2 * 255 + 1; jj < 4 * 255; ++jj)
{
exptab[jj] = 0;
}
}
//-----------------------------------------------------------------------------
// Multiply and Divide Tables
// Initialize MUL and DIV tables using LOG and EXP tables
static void gf256_muldiv_init()
{
// Allocate table memory 65KB x 2
uint8_t* m = GF256Ctx.GF256_MUL_TABLE;
uint8_t* d = GF256Ctx.GF256_DIV_TABLE;
// Unroll y = 0 subtable
for (int x = 0; x < 256; ++x)
{
m[x] = d[x] = 0;
}
// For each other y value,
for (int y = 1; y < 256; ++y)
{
// Calculate log(y) for mult and 255 - log(y) for div
const uint8_t log_y = static_cast<uint8_t>(GF256Ctx.GF256_LOG_TABLE[y]);
const uint8_t log_yn = 255 - log_y;
// Next subtable
m += 256;
d += 256;
// Unroll x = 0
m[0] = 0;
d[0] = 0;
// Calculate x * y, x / y
for (int x = 1; x < 256; ++x)
{
uint16_t log_x = GF256Ctx.GF256_LOG_TABLE[x];
m[x] = GF256Ctx.GF256_EXP_TABLE[log_x + log_y];
d[x] = GF256Ctx.GF256_EXP_TABLE[log_x + log_yn];
}
}
}
//-----------------------------------------------------------------------------
// Inverse Table
// Initialize INV table using DIV table
static void gf256_inv_init()
{
for (int x = 0; x < 256; ++x)
{
GF256Ctx.GF256_INV_TABLE[x] = gf256_div(1, static_cast<uint8_t>(x));
}
}
//-----------------------------------------------------------------------------
// Multiply and Add Memory Tables
/*
Fast algorithm to compute m[1..8] = a[1..8] * b in GF(256)
using SSE3 SIMD instruction set:
Consider z = x * y in GF(256).
This operation can be performed bit-by-bit. Usefully, the partial product
of each bit is combined linearly with the rest. This means that the 8-bit
number x can be split into its high and low 4 bits, and partial products
can be formed from each half. Then the halves can be linearly combined:
z = x[0..3] * y + x[4..7] * y
The multiplication of each half can be done efficiently via table lookups,
and the addition in GF(256) is XOR. There must be two tables that map 16
input elements for the low or high 4 bits of x to the two partial products.
Each value for y has a different set of two tables:
z = TABLE_LO_y(x[0..3]) xor TABLE_HI_y(x[4..7])
This means that we need 16 * 2 * 256 = 8192 bytes for precomputed tables.
Computing z[] = x[] * y can be performed 16 bytes at a time by using the
128-bit register operations supported by modern processors.
This is efficiently realized in SSE3 using the _mm_shuffle_epi8() function
provided by Visual Studio 2010 or newer in <tmmintrin.h>. This function
uses the low bits to do a table lookup on each byte. Unfortunately the
high bit of each mask byte has the special feature that it clears the
output byte when it is set, so we need to make sure it's cleared by masking
off the high bit of each byte before using it:
clr_mask = _mm_set1_epi8(0x0f) = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f
For the low half of the partial product, clear the high bit of each byte
and perform the table lookup:
p_lo = _mm_and_si128(x, clr_mask)
p_lo = _mm_shuffle_epi8(p_lo, TABLE_LO_y)
For the high half of the partial product, shift the high 4 bits of each
byte into the low 4 bits and clear the high bit of each byte, and then
perform the table lookup:
p_hi = _mm_srli_epi64(x, 4)
p_hi = _mm_and_si128(p_hi, clr_mask)
p_hi = _mm_shuffle_epi8(p_hi, TABLE_HI_y)
Finally add the two partial products to form the product, recalling that
addition is XOR in a Galois field:
result = _mm_xor_si128(p_lo, p_hi)
This crunches 16 bytes of x at a time, and the result can be stored in z.
*/
/*
Intrinsic reference:
SSE3, VS2010+, tmmintrin.h:
GF256_M128 _mm_shuffle_epi8(GF256_M128 a, GF256_M128 mask);
Emits the Supplemental Streaming SIMD Extensions 3 (SSSE3) instruction pshufb. This instruction shuffles 16-byte parameters from a 128-bit parameter.
Pseudo-code for PSHUFB (with 128 bit operands):
for i = 0 to 15 {
if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7..(i*8)+0] <- 0;
else
index[3..0] <- SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] <- DEST[(index*8+7)..(index*8+0)];
endif
}
SSE2, VS2008+, emmintrin.h:
GF256_M128 _mm_slli_epi64 (GF256_M128 a, int count);
Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.
GF256_M128 _mm_srli_epi64 (GF256_M128 a, int count);
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.
GF256_M128 _mm_set1_epi8 (char b);
Sets the 16 signed 8-bit integer values to b.
GF256_M128 _mm_and_si128 (GF256_M128 a, GF256_M128 b);
Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.
GF256_M128 _mm_xor_si128 ( GF256_M128 a, GF256_M128 b);
Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.
*/
// Initialize the MM256 tables using gf256_mul()
static void gf256_muladd_mem_init()
{
for (int y = 0; y < 256; ++y)
{
uint8_t lo[16], hi[16];
// TABLE_LO_Y maps 0..15 to 8-bit partial product based on y.
for (unsigned char x = 0; x < 16; ++x)
{
lo[x] = gf256_mul(x, static_cast<uint8_t>( y ));
hi[x] = gf256_mul(x << 4, static_cast<uint8_t>( y ));
}
const GF256_M128 table_lo = _mm_set_epi8(
lo[15], lo[14], lo[13], lo[12], lo[11], lo[10], lo[9], lo[8],
lo[7], lo[6], lo[5], lo[4], lo[3], lo[2], lo[1], lo[0]);
const GF256_M128 table_hi = _mm_set_epi8(
hi[15], hi[14], hi[13], hi[12], hi[11], hi[10], hi[9], hi[8],
hi[7], hi[6], hi[5], hi[4], hi[3], hi[2], hi[1], hi[0]);
_mm_store_si128(GF256Ctx.MM256_TABLE_LO_Y + y, table_lo);
_mm_store_si128(GF256Ctx.MM256_TABLE_HI_Y + y, table_hi);
}
}
//-----------------------------------------------------------------------------
// Initialization
static unsigned char LittleEndianTestData[4] = { 4, 3, 2, 1 };
static bool IsLittleEndian()
{
return 0x01020304 == *reinterpret_cast<uint32_t*>(LittleEndianTestData);
}
int gf256_init_(int version)
{
if (version != GF256_VERSION)
{
// User's header does not match library version.
return -1;
}
// Avoid multiple initialization
if (Initialized)
{
return 0;
}
Initialized = true;
if (!IsLittleEndian())
{
// Architecture is not supported (code won't work without mods).
return -2;
}
gf255_poly_init(DefaultPolynomialIndex);
gf256_explog_init();
gf256_muldiv_init();
gf256_inv_init();
gf256_muladd_mem_init();
return 0;
}
//-----------------------------------------------------------------------------
// Operations
void gf256_add_mem(void * GF256_RESTRICT vx,
const void * GF256_RESTRICT vy, int bytes)
{
GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<GF256_M128*>(vx);
const GF256_M128 * GF256_RESTRICT y16 = reinterpret_cast<const GF256_M128*>(vy);
// Handle multiples of 64 bytes
while (bytes >= 64)
{
GF256_M128 x0 = _mm_loadu_si128(x16);
GF256_M128 x1 = _mm_loadu_si128(x16 + 1);
GF256_M128 x2 = _mm_loadu_si128(x16 + 2);
GF256_M128 x3 = _mm_loadu_si128(x16 + 3);
GF256_M128 y0 = _mm_loadu_si128(y16);
GF256_M128 y1 = _mm_loadu_si128(y16 + 1);
GF256_M128 y2 = _mm_loadu_si128(y16 + 2);
GF256_M128 y3 = _mm_loadu_si128(y16 + 3);
_mm_storeu_si128(x16,
_mm_xor_si128(x0, y0));
_mm_storeu_si128(x16 + 1,
_mm_xor_si128(x1, y1));
_mm_storeu_si128(x16 + 2,
_mm_xor_si128(x2, y2));
_mm_storeu_si128(x16 + 3,
_mm_xor_si128(x3, y3));
x16 += 4;
y16 += 4;
bytes -= 64;
}
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// x[i] = x[i] xor y[i]
_mm_storeu_si128(x16,
_mm_xor_si128(
_mm_loadu_si128(x16),
_mm_loadu_si128(y16)));
x16++;
y16++;
bytes -= 16;
}
uint8_t * GF256_RESTRICT x1 = reinterpret_cast<uint8_t *>(x16);
const uint8_t * GF256_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y16);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t * GF256_RESTRICT x8 = reinterpret_cast<uint64_t *>(x1);
const uint64_t * GF256_RESTRICT y8 = reinterpret_cast<const uint64_t *>(y1);
*x8 ^= *y8;
x1 += 8;
y1 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t * GF256_RESTRICT x4 = reinterpret_cast<uint32_t *>(x1);
const uint32_t * GF256_RESTRICT y4 = reinterpret_cast<const uint32_t *>(y1);
*x4 ^= *y4;
x1 += 4;
y1 += 4;
bytes -= 4;
}
// Handle final bytes
switch (bytes)
{
case 3: x1[2] ^= y1[2];
case 2: x1[1] ^= y1[1];
case 1: x1[0] ^= y1[0];
default:
break;
}
}
void gf256_add2_mem(void * GF256_RESTRICT vz, const void * GF256_RESTRICT vx,
const void * GF256_RESTRICT vy, int bytes)
{
GF256_M128 * GF256_RESTRICT z16 = reinterpret_cast<GF256_M128*>(vz);
const GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<const GF256_M128*>(vx);
const GF256_M128 * GF256_RESTRICT y16 = reinterpret_cast<const GF256_M128*>(vy);
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// z[i] = x[i] xor y[i]
_mm_storeu_si128(z16,
_mm_xor_si128(
_mm_loadu_si128(z16),
_mm_xor_si128(
_mm_loadu_si128(x16),
_mm_loadu_si128(y16))));
x16++;
y16++;
z16++;
bytes -= 16;
}
uint8_t * GF256_RESTRICT z1 = reinterpret_cast<uint8_t *>(z16);
const uint8_t * GF256_RESTRICT x1 = reinterpret_cast<const uint8_t *>(x16);
const uint8_t * GF256_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y16);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t * GF256_RESTRICT z8 = reinterpret_cast<uint64_t *>(z1);
const uint64_t * GF256_RESTRICT x8 = reinterpret_cast<const uint64_t *>(x1);
const uint64_t * GF256_RESTRICT y8 = reinterpret_cast<const uint64_t *>(y1);
*z8 ^= *x8 ^ *y8;
x1 += 8;
y1 += 8;
z1 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t * GF256_RESTRICT z4 = reinterpret_cast<uint32_t *>(z1);
const uint32_t * GF256_RESTRICT x4 = reinterpret_cast<const uint32_t *>(x1);
const uint32_t * GF256_RESTRICT y4 = reinterpret_cast<const uint32_t *>(y1);
*z4 ^= *x4 ^ *y4;
x1 += 4;
y1 += 4;
z1 += 4;
bytes -= 4;
}
// Handle final bytes
switch (bytes)
{
case 3: z1[2] ^= x1[2] ^ y1[2];
case 2: z1[1] ^= x1[1] ^ y1[1];
case 1: z1[0] ^= x1[0] ^ y1[0];
default:
break;
}
}
void gf256_addset_mem(void * GF256_RESTRICT vz, const void * GF256_RESTRICT vx,
const void * GF256_RESTRICT vy, int bytes)
{
GF256_M128 * GF256_RESTRICT z16 = reinterpret_cast<GF256_M128*>(vz);
const GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<const GF256_M128*>(vx);
const GF256_M128 * GF256_RESTRICT y16 = reinterpret_cast<const GF256_M128*>(vy);
// Handle multiples of 64 bytes
while (bytes >= 64)
{
GF256_M128 x0 = _mm_loadu_si128(x16);
GF256_M128 x1 = _mm_loadu_si128(x16 + 1);
GF256_M128 x2 = _mm_loadu_si128(x16 + 2);
GF256_M128 x3 = _mm_loadu_si128(x16 + 3);
GF256_M128 y0 = _mm_loadu_si128(y16);
GF256_M128 y1 = _mm_loadu_si128(y16 + 1);
GF256_M128 y2 = _mm_loadu_si128(y16 + 2);
GF256_M128 y3 = _mm_loadu_si128(y16 + 3);
_mm_storeu_si128(z16, _mm_xor_si128(x0, y0));
_mm_storeu_si128(z16 + 1, _mm_xor_si128(x1, y1));
_mm_storeu_si128(z16 + 2, _mm_xor_si128(x2, y2));
_mm_storeu_si128(z16 + 3, _mm_xor_si128(x3, y3));
x16 += 4;
y16 += 4;
z16 += 4;
bytes -= 64;
}
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// z[i] = x[i] xor y[i]
_mm_storeu_si128(z16,
_mm_xor_si128(
_mm_loadu_si128(x16),
_mm_loadu_si128(y16)));
x16++;
y16++;
z16++;
bytes -= 16;
}
uint8_t * GF256_RESTRICT z1 = reinterpret_cast<uint8_t *>(z16);
const uint8_t * GF256_RESTRICT x1 = reinterpret_cast<const uint8_t *>(x16);
const uint8_t * GF256_RESTRICT y1 = reinterpret_cast<const uint8_t *>(y16);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t * GF256_RESTRICT z8 = reinterpret_cast<uint64_t *>(z1);
const uint64_t * GF256_RESTRICT x8 = reinterpret_cast<const uint64_t *>(x1);
const uint64_t * GF256_RESTRICT y8 = reinterpret_cast<const uint64_t *>(y1);
*z8 = *x8 ^ *y8;
x1 += 8;
y1 += 8;
z1 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t * GF256_RESTRICT z4 = reinterpret_cast<uint32_t *>(z1);
const uint32_t * GF256_RESTRICT x4 = reinterpret_cast<const uint32_t *>(x1);
const uint32_t * GF256_RESTRICT y4 = reinterpret_cast<const uint32_t *>(y1);
*z4 = *x4 ^ *y4;
x1 += 4;
y1 += 4;
z1 += 4;
bytes -= 4;
}
// Handle final bytes
switch (bytes)
{
case 3: z1[2] = x1[2] ^ y1[2];
case 2: z1[1] = x1[1] ^ y1[1];
case 1: z1[0] = x1[0] ^ y1[0];
default:
break;
}
}
void gf256_muladd_mem(void * GF256_RESTRICT vz, uint8_t y,
const void * GF256_RESTRICT vx, int bytes)
{
// Use a single if-statement to handle special cases
if (y <= 1)
{
if (y == 1)
{
gf256_add_mem(vz, vx, bytes);
}
return;
}
// Partial product tables; see above
const GF256_M128 table_lo_y = _mm_load_si128(GF256Ctx.MM256_TABLE_LO_Y + y);
const GF256_M128 table_hi_y = _mm_load_si128(GF256Ctx.MM256_TABLE_HI_Y + y);
// clr_mask = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f
const GF256_M128 clr_mask = _mm_set1_epi8(0x0f);
GF256_M128 * GF256_RESTRICT z16 = reinterpret_cast<GF256_M128*>(vz);
const GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<const GF256_M128*>(vx);
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// See above comments for details
GF256_M128 x0 = _mm_loadu_si128(x16);
GF256_M128 l0 = _mm_and_si128(x0, clr_mask);
x0 = _mm_srli_epi64(x0, 4);
GF256_M128 h0 = _mm_and_si128(x0, clr_mask);
l0 = _mm_shuffle_epi8(table_lo_y, l0);
h0 = _mm_shuffle_epi8(table_hi_y, h0);
const GF256_M128 p0 = _mm_xor_si128(l0, h0);
const GF256_M128 z0 = _mm_loadu_si128(z16);
_mm_storeu_si128(z16, _mm_xor_si128(p0, z0));
x16++;
z16++;
bytes -= 16;
}
uint8_t * GF256_RESTRICT z8 = reinterpret_cast<uint8_t*>(z16);
const uint8_t * GF256_RESTRICT x8 = reinterpret_cast<const uint8_t*>(x16);
const uint8_t * GF256_RESTRICT table = GF256Ctx.GF256_MUL_TABLE + ((unsigned)y << 8);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t word = table[x8[0]];
word |= (uint64_t)table[x8[1]] << 8;
word |= (uint64_t)table[x8[2]] << 16;
word |= (uint64_t)table[x8[3]] << 24;
word |= (uint64_t)table[x8[4]] << 32;
word |= (uint64_t)table[x8[5]] << 40;
word |= (uint64_t)table[x8[6]] << 48;
word |= (uint64_t)table[x8[7]] << 56;
*(uint64_t*)z8 ^= word;
x8 += 8;
z8 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t word = table[x8[0]];
word |= (uint32_t)table[x8[1]] << 8;
word |= (uint32_t)table[x8[2]] << 16;
word |= (uint32_t)table[x8[3]] << 24;
*(uint32_t*)z8 ^= word;
x8 += 4;
z8 += 4;
bytes -= 4;
}
// Handle single bytes
switch (bytes)
{
case 3: z8[2] ^= table[x8[2]];
case 2: z8[1] ^= table[x8[1]];
case 1: z8[0] ^= table[x8[0]];
default:
break;
}
}
void gf256_mul_mem(void * GF256_RESTRICT vz, const void * GF256_RESTRICT vx, uint8_t y, int bytes)
{
// Use a single if-statement to handle special cases
if (y <= 1)
{
if (y == 0)
{
memset(vz, 0, bytes);
}
return;
}
// Partial product tables; see above
const GF256_M128 table_lo_y = _mm_load_si128(GF256Ctx.MM256_TABLE_LO_Y + y);
const GF256_M128 table_hi_y = _mm_load_si128(GF256Ctx.MM256_TABLE_HI_Y + y);
// clr_mask = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f
const GF256_M128 clr_mask = _mm_set1_epi8(0x0f);
GF256_M128 * GF256_RESTRICT z16 = reinterpret_cast<GF256_M128*>(vz);
const GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<const GF256_M128*>(vx);
// Handle multiples of 16 bytes
while (bytes >= 16)
{
// See above comments for details
GF256_M128 x0 = _mm_loadu_si128(x16);
GF256_M128 l0 = _mm_and_si128(x0, clr_mask);
x0 = _mm_srli_epi64(x0, 4);
GF256_M128 h0 = _mm_and_si128(x0, clr_mask);
l0 = _mm_shuffle_epi8(table_lo_y, l0);
h0 = _mm_shuffle_epi8(table_hi_y, h0);
_mm_storeu_si128(z16, _mm_xor_si128(l0, h0));
x16++;
z16++;
bytes -= 16;
}
uint8_t * GF256_RESTRICT z8 = reinterpret_cast<uint8_t*>(z16);
const uint8_t * GF256_RESTRICT x8 = reinterpret_cast<const uint8_t*>(x16);
const uint8_t * GF256_RESTRICT table = GF256Ctx.GF256_MUL_TABLE + ((unsigned)y << 8);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t word = table[x8[0]];
word |= (uint64_t)table[x8[1]] << 8;
word |= (uint64_t)table[x8[2]] << 16;
word |= (uint64_t)table[x8[3]] << 24;
word |= (uint64_t)table[x8[4]] << 32;
word |= (uint64_t)table[x8[5]] << 40;
word |= (uint64_t)table[x8[6]] << 48;
word |= (uint64_t)table[x8[7]] << 56;
*(uint64_t*)z8 = word;
x8 += 8;
z8 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t word = table[x8[0]];
word |= (uint32_t)table[x8[1]] << 8;
word |= (uint32_t)table[x8[2]] << 16;
word |= (uint32_t)table[x8[3]] << 24;
*(uint32_t*)z8 = word;
x8 += 4;
z8 += 4;
bytes -= 4;
}
// Handle single bytes
switch (bytes)
{
case 3: z8[2] = table[x8[2]];
case 2: z8[1] = table[x8[1]];
case 1: z8[0] = table[x8[0]];
default:
break;
}
}
void gf256_memswap(void * GF256_RESTRICT vx, void * GF256_RESTRICT vy, int bytes)
{
GF256_M128 * GF256_RESTRICT x16 = reinterpret_cast<GF256_M128*>(vx);
GF256_M128 * GF256_RESTRICT y16 = reinterpret_cast<GF256_M128*>(vy);
// Handle blocks of 16 bytes
while (bytes >= 16)
{
GF256_M128 x0 = _mm_loadu_si128(x16);
GF256_M128 y0 = _mm_loadu_si128(y16);
_mm_storeu_si128(x16, y0);
_mm_storeu_si128(y16, x0);
bytes -= 16;
++x16;
++y16;
}
uint8_t * GF256_RESTRICT x1 = reinterpret_cast<uint8_t *>(x16);
uint8_t * GF256_RESTRICT y1 = reinterpret_cast<uint8_t *>(y16);
// Handle a block of 8 bytes
if (bytes >= 8)
{
uint64_t * GF256_RESTRICT x8 = reinterpret_cast<uint64_t *>(x1);
uint64_t * GF256_RESTRICT y8 = reinterpret_cast<uint64_t *>(y1);
uint64_t temp = *x8;
*x8 = *y8;
*y8 = temp;
x1 += 8;
y1 += 8;
bytes -= 8;
}
// Handle a block of 4 bytes
if (bytes >= 4)
{
uint32_t * GF256_RESTRICT x4 = reinterpret_cast<uint32_t *>(x1);
uint32_t * GF256_RESTRICT y4 = reinterpret_cast<uint32_t *>(y1);
uint32_t temp = *x4;
*x4 = *y4;
*y4 = temp;
x1 += 4;
y1 += 4;
bytes -= 4;
}
// Handle final bytes
uint8_t temp;
switch (bytes)
{
case 3: temp = x1[2]; x1[2] = y1[2]; y1[2] = temp;
case 2: temp = x1[1]; x1[1] = y1[1]; y1[1] = temp;
case 1: temp = x1[0]; x1[0] = y1[0]; y1[0] = temp;
default:
break;
}
}