-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathff_api_3d_perlin_sphere_map_v.1.0.1.lua
529 lines (464 loc) · 15 KB
/
ff_api_3d_perlin_sphere_map_v.1.0.1.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
-- 3d perlin sphere map v.1.0.1 -- improved perlin noise
function prepare()
-- constants
ROUGHNESS_THRESHOLD = 0.00001
REMAINDER_THRESHOLD = 0.00001
aspect = OUTPUT_HEIGHT / OUTPUT_WIDTH * 2
-- input values
details = get_slider_input(DETAILS) * 10 + 0.0001
grain = (get_slider_input(GRAIN) * 5) + 0.0001
OCTAVES_COUNT = math.floor(details)
-- sphere block
radius = get_slider_input(RADIUS)
-- fresnel / atmosphere fixed tilt and rotation -- locked to view.
angle_0 = math.rad(90)
cosa_a0 = math.cos(angle_0)
sina_a0 = math.sin(angle_0)
tilt_0 = math.rad(360)
cosa_t0 = math.cos(tilt_0)
sina_t0 = math.sin(tilt_0)
angle = get_angle_input(ROTATION)
if OUTPUT_WIDTH / OUTPUT_HEIGHT == 2 then
angle = angle + 180
end
angle_r = math.rad(angle)
angle_g = math.rad(angle + 240)
angle_b = math.rad(angle + 120)
cosa_r = math.cos(angle_r)
sina_r = math.sin(angle_r)
cosa_g = math.cos(angle_g)
sina_g = math.sin(angle_g)
cosa_b = math.cos(angle_b)
sina_b = math.sin(angle_b)
tilt = math.rad(get_angle_input(TILT))
cosa_t = math.cos(tilt)
sina_t = math.sin(tilt)
phase = math.rad(get_angle_input(PHASE))
cosa_p = math.cos(phase)
sina_p = math.sin(phase)
angle_e = math.rad(get_angle_input(ELEVATION) + 180)
cosa_e = math.cos(angle_e)
sina_e = math.sin(angle_e)
-- end
-- noise block
--[[
https://gist.githubusercontent.com/kymckay/25758d37f8e3872e1636d90ad41fe2ed/raw/1c647169a6729713f8987506b2e5c75a23b14969/perlin.lua
Implemented as described here:
http://flafla2.github.io/2014/08/09/perlinnoise.html
originally an external, FF requires internal script exclusively.
block only functions inside prepare(), appended to the end it throws a nil global value 'perlin' error.
]]--
perlin = {}
perlin.p = {}
-- perlin.offset = {}
-- to contain instances of called noise
math.randomseed(get_intslider_input(SEED))
--[[
embed in function called for each channel of noise generated.
function get_seed(); needs to provide viable offsets based on seed slider for each call. how is this implemented?
]]--
for i = 0, 255 do
perlin.p[i] = math.random(255)
perlin.p[256 + i] = perlin.p[i]
end
--[[
model already exists for get_perlin_octaves() per loop in get_sample().
get_perlin_octaves() can call perlin:noise(); will need revision based on determination of necessary arguments for intended use.
x, y, z passthru, q instance variable
]]--
-- return range: [ - 1, 1]
function perlin:noise(x, y, z)
y = y or 0
z = z or 0
-- calculate the "unit cube" that the point asked will be located in
local xi = bit32.band(math.floor(x), 255)
local yi = bit32.band(math.floor(y), 255)
local zi = bit32.band(math.floor(z), 255)
-- next we calculate the location (from 0 to 1) in that cube
x = x - math.floor(x)
y = y - math.floor(y)
z = z - math.floor(z)
-- we also fade the location to smooth the result
local u = self.fade(x)
local v = self.fade(y)
local w = self.fade(z)
-- hash all 8 unit cube coordinates surrounding input coordinate
local p = self.p
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
A = p[xi ] + yi
AA = p[A ] + zi
AB = p[A + 1 ] + zi
AAA = p[ AA ]
ABA = p[ AB ]
AAB = p[ AA + 1 ]
ABB = p[ AB + 1 ]
B = p[xi + 1] + yi
BA = p[B ] + zi
BB = p[B + 1 ] + zi
BAA = p[ BA ]
BBA = p[ BB ]
BAB = p[ BA + 1 ]
BBB = p[ BB + 1 ]
-- take the weighted average between all 8 unit cube coordinates
return self.lerp(w,
self.lerp(v,
self.lerp(u,
self:grad(AAA, x, y, z),
self:grad(BAA, x - 1, y, z)
),
self.lerp(u,
self:grad(ABA, x, y - 1, z),
self:grad(BBA, x - 1, y - 1, z)
)
),
self.lerp(v,
self.lerp(u,
self:grad(AAB, x, y, z - 1), self:grad(BAB, x - 1, y, z - 1)
),
self.lerp(u,
self:grad(ABB, x, y - 1, z - 1), self:grad(BBB, x - 1, y - 1, z - 1)
)
)
)
end
--[[
gradient function finds dot product between pseudorandom gradient vector
and the vector from input coordinate to a unit cube vertex.
]]--
perlin.dot_product = {
[0x0] = function(x, y, z) return x + y end,
[0x1] = function(x, y, z) return -x + y end,
[0x2] = function(x, y, z) return x - y end,
[0x3] = function(x, y, z) return -x - y end,
[0x4] = function(x, y, z) return x + z end,
[0x5] = function(x, y, z) return -x + z end,
[0x6] = function(x, y, z) return x - z end,
[0x7] = function(x, y, z) return -x - z end,
[0x8] = function(x, y, z) return y + z end,
[0x9] = function(x, y, z) return -y + z end,
[0xA] = function(x, y, z) return y - z end,
[0xB] = function(x, y, z) return -y - z end,
[0xC] = function(x, y, z) return y + x end,
[0xD] = function(x, y, z) return -y + z end,
[0xE] = function(x, y, z) return y - x end,
[0xF] = function(x, y, z) return -y - z end
}
function perlin:grad(hash, x, y, z)
return self.dot_product[bit32.band(hash, 0xF)](x, y, z)
end
-- fade function is used to smooth final output
function perlin.fade(t)
return t * t * t * (t * (t * 6 - 15) + 10)
end
function perlin.lerp(t, a, b)
return a + t * (b - a)
end
-- end perlin
-- perlin octaves initialization
remainder = details - OCTAVES_COUNT
if (remainder > REMAINDER_THRESHOLD) then
OCTAVES_COUNT = OCTAVES_COUNT + 1
end
-- end noise block
-- mode block
mode = get_intslider_input(MODE)
--[[
states transferred from checkboxes to mode intslider; flags set as follows:
if mode == 1 then
sphere = true
elseif mode == 2 then
sphere = true
rgban = true
elseif mode == 3 then
sphere = true
shaded = true
fresnel = true
elseif mode == 4 then
sphere = true
shaded = true
fresnel = true
planet = true
elseif mode == 5 then
sphere = true
vectors = true
elseif mode == 6 then
map = true
else
map = true
rgban = true
end
]]--
-- end
if (get_checkbox_input(HDR)) then
hdr = true
else
hdr = false
end
end;
function get_sample(x, y)
-- key variables
local nr, ng, nb = 0, 0, 0
local nx, ny, nz = 0, 0, 0
local nx_r, nx_g, nx_b = 0, 0, 0
local ny_r, ny_g, ny_b = 0, 0, 0
local nz_r, nz_g, nz_b = 0, 0, 0
local px, py, pz = 0, 0, 0
local px_r, px_g, px_b = 0, 0, 0
local z_r, z_g, z_b = 0, 0, 0
local px_p, py_e = 0, 0
local pr, x_ao, sh = 0, 0, 0
local dr, dg, db, da = 0, 0, 0, 0
local dx, dy, dz, da = 0, 0, 0, 0
local sx, sy, sz, sa = 0, 0, 0, 0
-- image generation
-- sphere block
if mode <= 5 then
px = (x * 2.0) - 1.0
px = px / radius
py = (y * 2.0) - 1.0
py = py / radius
px_p = (x * 2.0) - 1.0
px_p = px_p / radius
py_e = (y * 2.0) - 1.0
py_e = py_e / radius
x_ao = (x * 2.0) - 1.0
x_ao = x_ao / radius
y_to = (y * 2.0) - 1.0
y_to = y_to / radius
local len = math.sqrt((px * px) + (py * py))
if len > 1.0 then return 0,0,0,0 end
z = -math.sqrt(1.0 - ((px * px) + (py * py)))
pz = -math.sqrt(1.0 - ((px_p * px_p) + (py_e * py_e)))
z_to = -math.sqrt(1.0 - ((x_ao * x_ao) + (y_to * y_to)))
local tz = (cosa_t * z) - (sina_t * py)
local ty = (sina_t * z) + (cosa_t * py)
z = tz
py = ty
local tx_r = (cosa_r * px) - (sina_r * z)
local tz_r = (sina_r * px) + (cosa_r * z)
px_r = tx_r
z_r = tz_r
local tx_g = (cosa_g * px) - (sina_g * z)
local tz_g = (sina_g * px) + (cosa_g * z)
px_g = tx_g
z_g = tz_g
local tx_b = (cosa_b * px) - (sina_b * z)
local tz_b = (sina_b * px) + (cosa_b * z)
px_b = tx_b
z_b = tz_b
-- light and shadow
local tpz = (cosa_e * pz) - (sina_e * py_e)
local tpy_e = (sina_e * pz) + (cosa_e * py_e)
pz = tpz
py_e = tpy_e
local tpz = (cosa_p * px_p) - (sina_p * pz)
local tpx_p = (sina_p * px_p) + (cosa_p * pz)
px_p = tpx_p
pz = tpz
-- fresnel or atmosphere
local tz_to = (cosa_t0 * z_to) - (sina_t0 * y_to)
local ty_to = (sina_t0 * z_to) + (cosa_t0 * y_to)
z_to = tz_to
y_to = ty_to
local tx_ao = (cosa_a0 * x_ao) - (sina_a0 * z_to)
local tz_to = (sina_a0 * x_ao) + (cosa_a0 * z_to)
x_ao = tx_ao
z_to = tz_to
-- mapping vectors
h,s,l = fromrgb(px_r,px_g,px_b)
if OUTPUT_HEIGHT / OUTPUT_WIDTH == 2 then h = h * 2 - 1 end
x, y = h, py / 2 + 0.5
end
-- end
-- input maps
roughness = ROUGHNESS_THRESHOLD + get_sample_grayscale(x, y, ROUGHNESS) *
(1.0 - ROUGHNESS_THRESHOLD)
local contrast = (get_sample_grayscale(x, y, CONTRAST) * 2) - 1
local factor = (259 * (contrast + 1)) / (1 * (259 - contrast))
local r1, g1, b1, a1 = get_sample_map(x, y, HIGH)
local r2, g2, b2, a2 = get_sample_map(x, y, LOW)
local r3, g3, b3, a3 = get_sample_map(x, y, OVERLAY)
local dx, dy, dz, da = get_sample_map(x, y, DISTORTION)
local osx, osy, osz, osa = get_sample_map(x, y, OFFSET)
local sx, sy, sz, sa = get_sample_map(x, y, SCALE)
if sx > 100 then sx = 100 end
if sy > 100 then sy = 100 end
if sz > 100 then sz = 100 end
if sa > 100 then sa = 100 end
-- end
-- spherical map block
if mode >= 6 then
local x = x * aspect * math.pi
local y = y * math.pi
nx = math.cos(x) * math.sin(y)
ny = math.sin(x) * math.sin(y)
nz = math.cos(y)
end
-- end
-- noise generation
NOISE_SIZE = (((sx + sy + sz + sa) * 0.25) ^ 2)
OCTAVES = {}
local cell_size = (0.01 + NOISE_SIZE * 0.99) * grain
local scale = roughness
local octave_index
for octave_index = 1, OCTAVES_COUNT do
if (scale < ROUGHNESS_THRESHOLD) then
OCTAVES_COUNT = octave_index - 1
break
end
OCTAVES[octave_index] = {cell_size, scale}
cell_size = cell_size * 2.0
scale = scale * roughness
end
if (remainder >= 0.001) then
OCTAVES[OCTAVES_COUNT][2] = OCTAVES[OCTAVES_COUNT][2] * remainder
end
NORM_FACTOR = 0
for octave_index = 1, OCTAVES_COUNT do
NORM_FACTOR = NORM_FACTOR + OCTAVES[octave_index][2] ^ 2
end
NORM_FACTOR = 1 / math.sqrt(NORM_FACTOR)
local octave_index
if mode <= 5 then
px_r = px_r * (sx * sa) + osx
px_g = px_g * (sx * sa) + osx
px_b = px_b * (sx * sa) + osx
py = py * (sy * sa) + osy
z_r = z_r * (sz * sa) + osz
z_g = z_g * (sz * sa) + osz
z_b = z_b * (sz * sa) + osz
else
nx = nx * (sx * sa) + osx
ny = ny * (sy * sa) + osy
nz = nz * (sz * sa) + osz
nx_r = nx + 1
ny_r = ny + 1
nz_r = nz + 1
nx_g = nx + 2
ny_g = ny + 2
nz_g = nz + 2
nx_b = nx + 3
ny_b = ny + 3
nz_b = nz + 3
end
for octave_index = 1, OCTAVES_COUNT do
local size = OCTAVES[octave_index][1]
local opacity = OCTAVES[octave_index][2]
if mode <= 5 then
dr = dr + (opacity * perlin:noise(px_r * size, py * size, z_r * size)) * dx
dg = dg + (opacity * perlin:noise(px_g * size, py * size, z_g * size)) * dy
db = db + (opacity * perlin:noise(px_b * size, py * size, z_b * size)) * dz
nr = nr + opacity * perlin:noise(px_r * size , py * size, z_r * size + dr)
ng = ng + opacity * perlin:noise(px_g * size + dg, py * size, z_g * size)
nb = nb + opacity * perlin:noise(px_b * size, py * size + db, z_b * size)
else
-- dr = dr + (opacity * perlin:noise(nx * size,ny * size, nz * size)) * dx
-- dg = dg + (opacity * perlin:noise(nx * size,ny * size, nz * size)) * dy
-- db = db + (opacity * perlin:noise(nx * size, ny * size, nz * size)) * dz
dr = dr + (opacity * perlin:noise(nx_r * size,ny_r * size, nz_r * size)) * dx
dg = dg + (opacity * perlin:noise(nx_g * size,ny_g * size, nz_g * size)) * dy
db = db + (opacity * perlin:noise(nx_b * size, ny_b * size, nz_b * size)) * dz
-- nr = nr + (opacity * perlin:noise(nx * size, ny * size, nz * size )+ dr)
-- ng = ng + (opacity * perlin:noise(nx * size, ny* size, nz * size) + dg)
-- nb = nb + (opacity * perlin:noise(nx * size, ny * size, nz * size) + db)
nr = nr + (opacity * perlin:noise(nx_r * size,ny_r * size, nz_r * size )+ dr)
ng = ng + (opacity * perlin:noise(nx_g * size,ny_g * size, nz_g * size) + dg)
nb = nb + (opacity * perlin:noise(nx_b * size, ny_b * size, nz_b * size) + db)
end
end
-- contrast adjustments
nr = (nr + 1.0) * 0.5
ng = (ng + 1.0) * 0.5
nb = (nb + 1.0) * 0.5
nr = truncate(factor * (nr - 0.5) + 0.5)
ng = truncate(factor * (ng - 0.5) + 0.5)
nb = truncate(factor * (nb - 0.5) + 0.5)
-- input curves
pr = nr
pr = get_sample_curve(x, y, pr, PROFILE)
nr = get_sample_curve(x, y, nr, PROFILE)
ng = get_sample_curve(x, y, ng, PROFILE)
nb = get_sample_curve(x, y, nb, PROFILE)
f = 1 - (x_ao * 0.8)
f = get_sample_curve(x, y, f, FRESNEL)
sh = px_p / 2 + 0.5
sh = get_sample_curve(px_p, py_e, sh, PROFILE)
atm = f - ((1 - sh) ^ 2)
-- return conditions - input maps have different roles depending on mode.
if mode == 1 then
-- sphere = true
-- blends forground HIGH and background LOW
r, g, b, a = blend_normal(r2, g2, b2, a2, r1, g1, b1, a1, pr, hdr)
return r, g, b, a
elseif mode == 2 then
-- sphere = true
-- rgban = true
return nr, ng, nb, 1
elseif mode == 3 then
-- sphere = true
r, g, b, a = blend_normal(r2, g2, b2, a2, r1, g1, b1, a1, pr, hdr)
-- blends in shadow overlay
-- PROFILE applied to sh to control shadow sharpness.
r, g, b, a = blend_multiply(r, g, b, a, sh, sh, sh, 1, 1, hdr)
-- blends in lighting overlay
-- r, g, b, a = blend_linear_dodge(r, g, b, a, sh, sh, sh, 0.5, 1, hdr)
r, g, b, a = blend_screen(r, g, b, a, sh, sh, sh, 0.5, 1)
-- fresnel = true
-- blends in color fresnel overlay
r, g, b, a = blend_normal(r, g, b, a, r3, g3, b3, a3, atm, hdr)
return r, g, b, a
elseif mode == 4 then
-- sphere = true
-- planet = true
-- blends clouds HIGH and surface LOW plus shaded with atmosphere in color fresnel overlay
r, g, b, a = blend_normal(r2, g2, b2, a2, r1, g1, b1, a1, 1, hdr)
-- shaded = true
-- blends in shadow overlay
r, g, b, a = blend_multiply(r, g, b, a, sh, sh, sh, 1, 1, hdr)
-- blends in lighting overlay
r, g, b, a = blend_linear_dodge(r, g, b, a, sh, sh, sh, 0.5, 1, hdr)
-- fresnel = true
r, g, b, a = blend_normal(r, g, b, a, r3, g3, b3, a3, atm, hdr)
return r, g, b, a
elseif mode == 5 then
-- sphere = true
-- vectors = true
-- vectors ignores map inputs
return h, py, px_p, 1
elseif mode == 6 then
map = true
-- blends forground HIGH and background LOW
r, g, b, a = blend_normal(r2, g2, b2, a2, r1, g1, b1, a1, pr, hdr)
return r, g, b, a
else
-- map = true
-- rgban = true
return nr, ng, nb, 1
end
-- debug
end;
function fromrgb(r, g, b)
local max, min = math.max(r, g, b), math.min(r, g, b)
local h, s, l
l = (max + min) / 2
if max == min then
h, s = 0, 0 -- achromatic
else
local d = max - min
local s
if l > 0.5 then s = d / (2 - max - min) else s = d / (max + min) end
if max == r then
h = (g - b) / d
if g < b then h = h + 6 end
elseif max == g then h = (b - r) / d + 2
elseif max == b then h = (r - g) / d + 4
end
h = h / 6
end
return h, s, l or 1
end
function truncate(value)
if value <= 0 then value = 0 end
if value >= 1 then value = 1 end
return value
end;