-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d_sphere_v.0.0.3.lua
216 lines (180 loc) · 5.29 KB
/
3d_sphere_v.0.0.3.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
-- 3d sphere v.0.0.3
-- produces gradients mapped to the x, y and z axis
-- hsl conversion of hue rotations gradients allows mapping of sphere
-- y rotation, x tilt, z roll
function prepare()
aspect = OUTPUT_HEIGHT / OUTPUT_WIDTH * 2
-- tilt & rotation precalc
--[[
-- https://www.khanacademy.org/computing/computer-programming/programming-games-visualizations/programming-3d-shapes/a/rotating-3d-shapes#:~:text=times%20%5Csin(%5Cbeta)-,x,sin(%CE%B2),-Writing%20a%20rotate
x =x × cos(ß) - y × sin(ß)
y= y × cos(ß) + x × sin(ß)
]]--
radius = get_slider_input(RADIUS)
--[[
-- fresnel / atmosphere fixed tilt and rotation -- locked to view.
angle_0 = math.rad(90)
cosa_a0 = math.cos(angle_0) -- = 0
sina_a0 = math.sin(angle_0) -- = 1
tilt_0 = math.rad(360)
cosa_t0 = math.cos(tilt_0) -- = 1
sina_t0 = math.sin(tilt_0) -- = 0
]]--
rotation = math.rad(get_angle_input(ROTATION))
-- y-axis = yaw
cosa_y = math.cos(rotation)
sina_y = math.sin(rotation)
-- hue rotations
rotation_r = math.rad(rotation)
cosa_r = math.cos(rotation_r)
sina_r = math.sin(rotation_r)
rotation_g = math.rad(rotation + 240)
cosa_g = math.cos(rotation_g)
sina_g = math.sin(rotation_g)
rotation_b = math.rad(rotation + 120)
cosa_b = math.cos(rotation_b)
sina_b = math.sin(rotation_b)
tilt = math.rad(get_angle_input(TILT))
-- x-axis = pitch
cosa_x = math.cos(tilt)
sina_x = math.sin(tilt)
roll = math.rad(get_angle_input(ROLL))
-- z-axis = roll
cosa_z = math.cos(roll)
sina_z = math.sin(roll)
-- oriented to view.
phase = math.rad(get_angle_input(PHASE) + 90 )
-- y-axis = yaw
cosa_p = math.cos(phase)
sina_p = math.sin(phase)
elevation = math.rad(360 - (get_angle_input(ELEVATION) - 270))
-- z-axis = roll -- locked to view.
cosa_e = math.cos(elevation)
sina_e = math.sin(elevation)
-- end
if (get_checkbox_input(HDR)) then
hdr = true
else
hdr = false
end
end;
function get_sample(x, y)
-- key variables
local px, py, pz = 0, 0, 0
local px_r, px_g, px_b = 0, 0, 0
local z_r, z_g, z_b = 0, 0, 0
local px_p, py_e = 0, 0
local r,g,b,a = 1, 1, 1, 1
-- image generation
px = (x * 2.0) - 1.0
px = px / radius
py = (y * 2.0) - 1.0
py = py / radius
px_p = (x * 2.0) - 1.0
px_p = px_p / radius
py_e = (y * 2.0) - 1.0
py_e = py_e / radius
x_r0 = (x * 2.0) - 1.0
x_r0 = x_r0 / radius
y_t0 = (y * 2.0) - 1.0
y_t0 = y_t0 / radius
local len = math.sqrt((px*px)+(py*py))
if len > 1.0 then return 0,0,0,0 end
z_t0 = -math.sqrt(1.0 - ((x_r0 * x_r0) + (y_t0 * y_t0)))
pz = -math.sqrt(1.0 - ((px_p * px_p) + (py_e * py_e)))
pz_p = -math.sqrt(1.0 - ((px_p * px_p) + (py_e * py_e)))
-- light and shadow
-- elevation (roll)
local tx_e = (cosa_e * px_p) - (sina_e * py_e)
local ty_e = (sina_e * px_p) + (cosa_e * py_e)
px_p = tx_e
py_e = ty_e
-- phase (rotation)
local tx_p = (cosa_p * px_p) - (sina_p * pz_p)
local tz_p = (sina_p * px_p) + (cosa_p * pz_p)
px_p = tx_p
pz_p = tz_p
-- roll : changes in x and y
local tx = (cosa_z * px) - (sina_z * py)
local ty = (sina_z * px) + (cosa_z * py)
px = tx
py = ty
-- tilt : changes in y and z
local tz = (cosa_x * pz) - (sina_x * py)
local ty = (sina_x * pz) + (cosa_x * py)
pz = tz
py = ty
-- rotation : changes in x and z
local tx = (cosa_y * px) - (sina_y * pz)
local tz = (sina_y * px) + (cosa_y * pz)
px = tx
pz = tz
-- hue rotations : changes in x and z
local tx_r = (cosa_r * px) - (sina_r * pz)
local tz_r = (sina_r * px) + (cosa_r * pz)
px_r = tx_r
pz_r = tz_r
local tx_g = (cosa_g * px) - (sina_g * pz)
local tz_g = (sina_g * px) + (cosa_g * pz)
px_g = tx_g
pz_g = tz_g
local tx_b = (cosa_b * px) - (sina_b * pz)
local tz_b = (sina_b * px) + (cosa_b * pz)
px_b = tx_b
pz_b = tz_b
-- fresnel or atmosphere
local tz_t0 = (1 * z_t0) - (0 * y_t0)
local ty_t0 = (0 * z_t0) + (1 * y_t0)
z_t0 = tz_t0
y_t0 = ty_t0
local tx_r0 = (0 * x_r0) - (1 * z_t0)
local tz_t0 = (1 * x_r0) + (0 * z_t0)
x_r0 = tx_r0
z_t0 = tz_t0
--[[
]]--
h,s,l = fromrgb(px_r,px_g,px_b)
if aspect == 1 then h = h * 2 - 1 end
x, y = h, py / 2 + 0.5
-- input image
local r, g, b, a = get_sample_map(x, y, SOURCE)
local r3, g3, b3, a3 = get_sample_map(x, y, OVERLAY)
f = 1 - (x_r0 * 0.8)
f = get_sample_curve(x, y, f, FRESNEL)
sh = px_p / 2 + 0.5
sh = get_sample_curve(px_p, py_e, sh, PROFILE)
atm = f - ((1 - sh) ^ 2)
-- compositing and return
-- blends in shadow overlay
r, g, b, a = blend_multiply(r, g, b, a, sh, sh, sh, 1, 1, hdr)
-- blends in lighting overlay
r, g, b, a = blend_linear_dodge(r, g, b, a, sh, sh, sh, 0.125, 1, hdr)
-- r, g, b, a = blend_screen(r, g, b, a, sh, sh, sh, 0.5, 1)
-- fresnel = true
r, g, b, a = blend_normal(r, g, b, a, r3, g3, b3, a3, atm, hdr)
-- blends in atmosphere overlay
r, g, b, a = blend_normal(r, g, b, a, r3, g3, b3, a3, 0.15 * sh, hdr)
return r, g, b, a
-- return px,py,pz,a
-- return h, py, pz / 2 + 0.5, a
end;
function fromrgb(r, g, b)
local max, min = math.max(r, g, b), math.min(r, g, b)
local h, s, l
l = (max + min) / 2
if max == min then
h, s = 0, 0 -- achromatic
else
local d = max - min
local s
if l > 0.5 then s = d / (2 - max - min) else s = d / (max + min) end
if max == r then
h = (g - b) / d
if g < b then h = h + 6 end
elseif max == g then h = (b - r) / d + 2
elseif max == b then h = (r - g) / d + 4
end
h = h / 6
end
return h, s, l or 1
end;