-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d_rgb_perlin_sphere_v.3.lua
323 lines (278 loc) · 9.02 KB
/
3d_rgb_perlin_sphere_v.3.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
-- 3d perlin sphere v.3
-- produces grayscale or rgb noise mapped to a 3d sphere
-- add internal rgb distortion with grayscale control
function prepare()
-- constants
ROUGHNESS_THRESHOLD = 0.00000001
REMAINDER_THRESHOLD = 0.00000001
details = get_intslider_input(DETAILS)
NOISE_SIZE = get_slider_input(SCALE)
frame = OUTPUT_HEIGHT / OUTPUT_WIDTH * 2
-- input values
OCTAVES_COUNT = math.floor(details)
remainder = details - OCTAVES_COUNT
if (remainder > REMAINDER_THRESHOLD) then
OCTAVES_COUNT = OCTAVES_COUNT + 1
end;
-- tilt & rotation precalc
radius = get_slider_input(RADIUS)
angle = get_angle_input(ROTATION)
angle_r = math.rad(angle)
angle_g = math.rad(angle + 240)
angle_b = math.rad(angle + 120)
cosa_r = math.cos(angle_r)
sina_r = math.sin(angle_r)
cosa_g = math.cos(angle_g)
sina_g = math.sin(angle_g)
cosa_b = math.cos(angle_b)
sina_b = math.sin(angle_b)
tilt = math.rad(get_angle_input(TILT))
cosa_t = math.cos(tilt)
sina_t = math.sin(tilt)
p = {}
math.randomseed(get_intslider_input(SEED))
for i = 0, 255 do
p[i] = math.random(255)
p[256 + i] = p[i]
end;
if (get_checkbox_input(SPHERE_OR_MAP)) then
form = false
else
form = true
end;
if (get_checkbox_input(HDR)) then
hdr = true
else
hdr = false
end;
if (get_checkbox_input(RGB_NOISE)) then
rgbn = true
else
rgbn = false
end;
if (get_checkbox_input(RGB_OR_V)) then
vrgb = true
else
vrgb = false
end;
if (get_checkbox_input(ASPECT)) then
aspect = true
else
aspect = false
end;
end;
function get_sample(x, y)
local contrast = (get_sample_grayscale(x, y, CONTRAST) * 2) - 1
local factor = (259 * (contrast + 1)) / (1 * (259 - contrast))
-- noise generation
local roughness = (ROUGHNESS_THRESHOLD +
(get_sample_grayscale(x, y, ROUGHNESS)) *
(1.0 - ROUGHNESS_THRESHOLD)) * 1.875 -- get_sample_grayscale(x, y, ROUGHNESS) * 1.5
-- local roughness = ROUGHNESS_THRESHOLD +
-- get_sample_grayscale(x, y, ROUGHNESS) * (1.0 - ROUGHNESS_THRESHOLD)
OCTAVES = {}
local cell_size = (math.log(NOISE_SIZE + 0.0001) * 0.99) -- * 1.5) * 10
local scale = roughness
local octave_index
for octave_index = 1, OCTAVES_COUNT do
if (scale < ROUGHNESS_THRESHOLD) then
OCTAVES_COUNT = octave_index - 1
break
end;
OCTAVES[octave_index] = {cell_size, scale}
cell_size = cell_size * 2.0
scale = scale * roughness
end;
if (remainder >= 0.00000001) then
OCTAVES[OCTAVES_COUNT][2] = OCTAVES[OCTAVES_COUNT][2] * remainder
end;
NORM_FACTOR = 0
for octave_index = 1, OCTAVES_COUNT do
NORM_FACTOR = NORM_FACTOR + OCTAVES[octave_index][2] -- ^ 2
end;
nr, ng, nb = 0, 0, 0
if form then
-- sphere generation and manipulation
-- origin to center
local px = (x * 2.0) - 1.0
local py = (y * 2.0) - 1.0
-- set sphere radius (max == screen height)
px = px / radius
py = py / radius
local len = math.sqrt((px * px) + (py * py))
-- check radius and clip
if len > 1.0 then return 0, 0, 0, 0 end;
local z = - math.sqrt(1.0 - ((px * px) + (py * py)))
-- mapping for rotation and tilt
local tz = (cosa_t * z) - (sina_t * py)
local ty = (sina_t * z) + (cosa_t * py)
z = tz
py = ty
local tx_r = (cosa_r * px) - (sina_r * z)
local tz_r = (sina_r * px) + (cosa_r * z)
px_r = tx_r
z_r = tz_r
local tx_g = (cosa_g * px) - (sina_g * z)
local tz_g = (sina_g * px) + (cosa_g * z)
px_g = tx_g
z_g = tz_g
local tx_b = (cosa_b * px) - (sina_b * z)
local tz_b = (sina_b * px) + (cosa_b * z)
px_b = tx_b
z_b = tz_b
h, s, l = fromrgb(px_r, px_g, px_b)
if aspect then h = h * 2 - 1 end;
-- distortion by neighboring channel noise, modified by color input (power)
local dx, dy, dz, da = get_sample_map(x, y, DISTORTION) -- * 2
-- noise or gradient calculations can be assigned to variables here
local dr, dg, db = 0, 0, 0
local octave_index
for octave_index = 1, OCTAVES_COUNT do
local size = OCTAVES[octave_index][1]
local opacity = OCTAVES[octave_index][2]
local noise_z = octave_index
dr = dr + (opacity * noise(px_r * size, py * size, ((z_r * size) + noise_z) + OUTPUT_WIDTH * - 1)) * dx
dg = dg + (opacity * noise(px_g * size, py * size, ((z_g * size) + noise_z) + OUTPUT_WIDTH * - 2)) * dy
db = db + (opacity * noise(px_b * size, py * size, ((z_b * size) + noise_z) + OUTPUT_WIDTH * - 3)) * dz
nr = nr + (opacity * noise(px_r * size + dr, py * size + dg, ((z_r * size) + noise_z + db) + OUTPUT_WIDTH))
ng = ng + (opacity * noise(px_g * size + dg, py * size + db, ((z_g * size) + noise_z + dr) + OUTPUT_WIDTH * 2))
nb = nb + (opacity * noise(px_b * size + db, py * size + dr, ((z_b * size) + noise_z + dg) + OUTPUT_WIDTH * 3))
end;
nr = (nr + 1.0) / 2.0
ng = (ng + 1.0) / 2.0
nb = (nb + 1.0) / 2.0
na = ((nr + ng + nb) / 2)^2
nr = truncate(factor * (nr - 0.5) + 0.5)
ng = truncate(factor * (ng - 0.5) + 0.5)
nb = truncate(factor * (nb - 0.5) + 0.5)
na = truncate(factor * (na - 0.5) + 0.5)
nr = get_sample_curve(x, y, nr, PROFILE)
ng = get_sample_curve(x, y, ng, PROFILE)
nb = get_sample_curve(x, y, nb, PROFILE)
na = get_sample_curve(x, y, na, PROFILE)
-- map inputs to sphere
local r1, g1, b1, a1 = get_sample_map(h, py / 2 + 0.5, BACKGROUND)
local r2, g2, b2, a2 = get_sample_map(h, py / 2 + 0.5, FOREGROUND)
r, g, b, a = blend_normal(r1, g1, b1, a1, r2, g2, b2, a2, na, hdr)
else
-- map generation
local x = x * frame * math.pi
local y = y * math.pi
local nx = math.cos(x) * math.sin(y)
local ny = math.sin(x) * math.sin(y)
local nz = math.cos(y)
-- distortion by neighboring channel noise, modified by color input (power)
local dx, dy, dz, da = get_sample_map(x, y, DISTORTION) -- * 2
-- noise or gradient calculations can be assigned to variables here
local dr, dg, db = 0, 0, 0
local octave_index
for octave_index = 1, OCTAVES_COUNT do
local size = OCTAVES[octave_index][1]
local opacity = OCTAVES[octave_index][2]
local noise_z = octave_index
dr = dr + (opacity * noise(nx * size, ny * size, ((nz * size) + noise_z) + OUTPUT_WIDTH * - 1)) * dx
dg = dg + (opacity * noise(nx * size, ny * size, ((nz * size) + noise_z) + OUTPUT_WIDTH * - 2)) * dy
db = db + (opacity * noise(nx * size, ny * size, ((nz * size) + noise_z) + OUTPUT_WIDTH * - 3)) * dz
nr = nr + (opacity * noise(nx * size + dr, ny * size + dg, ((nz * size) + noise_z + db) + OUTPUT_WIDTH))
ng = ng + (opacity * noise(nx * size + dg, ny * size + db, ((nz * size) + noise_z + dr) + OUTPUT_WIDTH * 2))
nb = nb + (opacity * noise(nx * size + db, ny * size + dr, ((nz * size) + noise_z + dg) + OUTPUT_WIDTH * 3))
end;
nr = (nr + 1.0) / 2.0
ng = (ng + 1.0) / 2.0
nb = (nb + 1.0) / 2.0
na = ((nr + ng + nb) / 2)^2
nr = truncate(factor * (nr - 0.5) + 0.5)
ng = truncate(factor * (ng - 0.5) + 0.5)
nb = truncate(factor * (nb - 0.5) + 0.5)
na = truncate(factor * (na - 0.5) + 0.5)
nr = get_sample_curve(x, y, nr, PROFILE)
ng = get_sample_curve(x, y, ng, PROFILE)
nb = get_sample_curve(x, y, nb, PROFILE)
na = get_sample_curve(x, y, na, PROFILE)
local r1, g1, b1, a1 = get_sample_map(nx, ny, BACKGROUND)
local r2, g2, b2, a2 = get_sample_map(nx, ny, FOREGROUND)
r, g, b, a = blend_normal(r1, g1, b1, a1, r2, g2, b2, a2, na, hdr)
end;
-- return nx, ny, nz, 1
-- return nr, ng, nb, 1
-- return nr, nr, nr, 1
-- return ng, ng, ng, 1
-- return nb, nb, nb, 1
-- return px / 2 + 0.5, 0, 0, 1
if rgbn then
if vrgb then
return na, na, na, 1
end;
return nr, ng, nb, 1
else
return r, g, b, a
end;
end;
function noise(x, y, z)
local X = math.floor(x) % 256
local Y = math.floor(y) % 256
local Z = math.floor(z) % 256
x = x - math.floor(x)
y = y - math.floor(y)
z = z - math.floor(z)
local u = fade(x)
local v = fade(y)
local w = fade(z)
A = p[X ] + Y
AA = p[A] + Z
AB = p[A + 1] + Z
B = p[X + 1] + Y
BA = p[B] + Z
BB = p[B + 1] + Z
return lerp(w, lerp(v, lerp(u, grad(p[AA ], x, y, z),
grad(p[BA ], x - 1, y, z)),
lerp(u, grad(p[AB ], x, y - 1, z),
grad(p[BB ], x - 1, y - 1, z))),
lerp(v, lerp(u, grad(p[AA + 1], x, y, z - 1),
grad(p[BA + 1], x - 1, y, z - 1)),
lerp(u, grad(p[AB + 1], x, y - 1, z - 1),
grad(p[BB + 1], x - 1, y - 1, z - 1)))
)
end;
function fade(t)
return t * t * t * (t * (t * 6 - 15) + 10)
end;
function lerp(t, a, b)
return a + t * (b - a)
end;
function grad(hash, x, y, z)
local h = hash % 16
local u
local v
if (h<8) then u = x else u = y end;
if (h<4) then v = y elseif (h == 12 or h == 14) then v = x else v = z end;
local r
if ((h % 2) == 0) then r = u else r = - u end;
if ((h % 4) == 0) then r = r + v else r = r - v end;
return r
end;
function truncate(value)
if value <= 0 then value = 0 end;
if value >= 1 then value = 1 end;
return value
end;
function fromrgb(r, g, b)
local max, min = math.max(r, g, b), math.min(r, g, b)
local h, s, l
l = (max + min) / 2
if max == min then
h, s = 0, 0 -- achromatic
else
local d = max - min
local s
if l > 0.5 then s = d / (2 - max - min) else s = d / (max + min) end;
if max == r then
h = (g - b) / d
if g < b then h = h + 6 end;
elseif max == g then h = (b - r) / d + 2
elseif max == b then h = (r - g) / d + 4
end;
h = h / 6
end;
return h, s, l or 1
end;