forked from rjpraj/Web-Scrapping-using-bs4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleaning_tarala.py
133 lines (99 loc) · 4.1 KB
/
cleaning_tarala.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
"""
Created on Mon May 6 12:51:12 2019
@author: Rajesh
"""
from django.core.validators import URLValidator
from django.core.exceptions import ValidationError
import re
import pandas as pd
import csv
data1 = pd.read_csv("ingredient_quantities.csv")
data2 = pd.read_csv("ingred2.csv")
data1 = pd.DataFrame(data1)
data2 = pd.DataFrame(data2)
d = []
d.append(data2.loc[0,"name"])
count = 0
n1 = len(data1)
n2 = len(data2)
##################### updating the quantity table for repeatation ##########################
for i in range(len(data2)):
if data2.loc[i,"name"] in d:
# print("already present : ",data2.loc[i,"name"])
# print(d.index(data2.loc[i,"name"]))
data1.loc[i,"ingredient_id"] = d.index(data2.loc[i,"name"])+1
count = count+1
else:
d.append(data2.loc[i,"name"])
# print(d[i])
data1.to_csv('ingredient_quantities.csv')
#data2 = pd.read_csv("ingredients.csv")
c = []
clean = []
clean.append(' ')
######################## removing the repeatability in ingredients table ##########
for i in range(len(data2)):
if data2.loc[i,"name"] in clean:
print(" ")
print("index",i)
data2 = data2.drop(i)
# print(data2[:10])
# print("index",i)
# i = i-1
else:
clean.append(data2.loc[i,"name"])
data2.to_csv('ingred2.csv')
Words = ['Grated','Powder','Whole', 'Dry','Split','Cubes','Crushed','Chopped','Peeled','Sliced','Boiled','Whisked',
'Yellow','Red','Green','Hung','Crumbled','Powdered','Paste','Dried','Boiled','Punjabi','Long','Grained',
'Broken','Par','-',',','Instant','White','Black','Footlong','Freshly','Ground','Mozzarella','Garden','Whites',
'Spring','Slices','Beaten','Whipped','Blanched','De-Skinned','And','Frozen','Vertically','Cooked','Soft',
'Cooking','Quick','Strands','Icing','Plain','Kernels','Low','Fat','Toasted','Steamed','Purple','Shredded',
'Melted','Deep-Fried','Halved','Mashed','Crumbs','Processed','In','Florets','Sprigs','Wedges','Finely',
'Leaves','Soaked','Overnight','Roughly','Cut','Basic','Fresh','Thick','Iceberg','Parboiled','Jain','Diagonally',
'Deseeded','Crush','Slit','Raw','Coarsely','Sprouted','Rock','Grilled','Extra','Roasted','Skimmed','Soya',
'Mixed','Jelly','Syrup','Condensed','Seeds','Rectangular','Fried','Halves','Long-Grained','Dressing',
'Calorie','Dough','Drained','Tempered','Essence','Non-Dairy','Whipping','Chilled','Seedless','Balls',
'Loaf','French','Medium','Sized','Par-Boiled','Cubed','Strips','Juliennes','Low-Fat','Virgin','Self',
'Rising','Flavoured','Unsweetened','Mix','Torn','Into','Pieces','Roundels','Flakes','Spears','Coloured',
'Silvers','Round','Sea','Ripe','Sheets','Cube','Chips','Greek','Segments','Pulp','Sponge','Of','Healthy',
'Baked','Clear','Stick','Large','Fingers','Puree','Mixture','Rich','Unbeaten','Big','Thinly','Peels',
'Softened','Unpeeled','Tender','Style','Quatered','Ni','Thickly','Unsalted','Veg','Mm.']
data = pd.read_csv("ingred2.csv")
for i in range(len(data)):
s = str(data.loc[i,"name"])
print(s.split())
n = len(s.split())
w = s.split()
print(w)
a = ''
j = 0
while j < n:
if w[j] in Words:
print("##############")
print(w.remove(w[j]))
n = n-1
print(n)
# print(w)
# print(w,len(w))
else:
j = j+1
print("*******************")
print(w)
print("length",len(w))
print("i",i)
for k in range(len(w)):
a = a+w[k]+' '
print(a)
data.loc[i,"name"] = a
data.to_csv('ingred2.csv')
#data.name[:7]
#print(s)
# data.loc[i,"name"] = s
dat = pd.read_csv("ingredients.csv")
for i in range(len(dat)):
s = str(dat.loc[i,"name"])
s = ''.join([i for i in s if not i.isdigit()])
s = s.replace(',','')
dat.loc[i,"name"] = s
dat.to_csv('ingredien.csv')