You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Pass the data sources to AirMap and specify the output format you want to create.# AirMap will automatically organize and map the data sources into your output format designed in Airtable.Internal_Import_Format1=pd.read_csv("Internal_Import_Format1.csv",dtype=str)
Internal_Import_Format2=pd.read_csv("Internal_Import_Format2.csv",dtype=str)
Internal_Table_Format1=pd.read_csv("Internal_Table_Format1.csv",dtype=str)
data= {'Internal_Import_Format1' : Internal_Import_Format1,
'Internal_Import_Format2' : Internal_Import_Format2,
'Internal_Table_Format1' : Internal_Table_Format1 }
airMap=airtableDataMapper(base_key,airAPI_key)
airMap.findMappingView("Project A - Client Summary").mapData(data)
Resulting output table
Line Service ID
ServiceProviderID
Date of Service
PurchaserDOB
PurchaseAmount
Document
0
20394822
1938472929
10/09/2021
7/4/1776
$103.20
AJ3fLN32jS1SK2
1
20428284
1293018083
10/07/2021
12/30/1899
$120.12
J2sjldw3nSk4S2l
2
19428292
9420410832
10/08/2021
1/26/1980
$84.23
2Pn28dh1lsdD0Q
You can use AirMap to check a mapping's requirements directly in Python:
# Check input data sources used for a chosen mappingairMap.findMappingView("Project A - Client Summary").viewInputSources()