-
Notifications
You must be signed in to change notification settings - Fork 116
/
ner_silver_to_gold.py
67 lines (60 loc) · 2.7 KB
/
ner_silver_to_gold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import prodigy
from prodigy.models.ner import EntityRecognizer
from prodigy.components.preprocess import add_tokens
from prodigy.components.db import connect
from prodigy.util import split_string
import spacy
from typing import List, Optional
# Recipe decorator with argument annotations: (description, argument type,
# shortcut, type / converter function called on value before it's passed to
# the function). Descriptions are also shown when typing --help.
@prodigy.recipe(
"ner.silver-to-gold",
silver_dataset=("Dataset with binary annotations", "positional", None, str),
gold_dataset=("Name of dataset to save new annotations", "positional", None, str),
spacy_model=("The base model", "positional", None, str),
label=("One or more comma-separated labels", "option", "l", split_string),
)
def ner_silver_to_gold(
silver_dataset: str,
gold_dataset: str,
spacy_model: str,
label: Optional[List[str]] = None,
):
"""
Take an existing "silver" dataset with binary accept/reject annotations,
merge the annotations to find the best possible analysis given the
constraints defined in the annotations, and manually edit it to create
a perfect and complete "gold" dataset.
"""
# Connect to the database using the settings from prodigy.json, check
# that the silver dataset exists and load it
DB = connect()
if silver_dataset not in DB:
raise ValueError("Can't find dataset '{}'.".format(silver_dataset))
silver_data = DB.get_dataset(silver_dataset)
# Load the spaCy model
nlp = spacy.load(spacy_model)
if label is None:
# Get the labels from the model by looking at the available moves, e.g.
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
ner = nlp.get_pipe("ner")
label = sorted(ner.labels)
# Initialize Prodigy's entity recognizer model, which uses beam search to
# find all possible analyses and outputs (score, example) tuples
model = EntityRecognizer(nlp, label=label)
# Merge all annotations and find the best possible analyses
stream = model.make_best(silver_data)
# Tokenize the incoming examples and add a "tokens" property to each
# example. Also handles pre-defined selected spans. Tokenization allows
# faster highlighting, because the selection can "snap" to token boundaries.
stream = add_tokens(nlp, stream)
return {
"view_id": "ner_manual", # Annotation interface to use
"dataset": gold_dataset, # Name of dataset to save annotations
"stream": stream, # Incoming stream of examples
"config": { # Additional config settings, mostly for app UI
"lang": nlp.lang,
"labels": label, # Selectable label options
},
}