-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
257 lines (207 loc) · 10.5 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding:utf-8 -*-
import sys
import os
import argparse
from paths import *
# Mean color to subtract before propagating an image through a DNN
MEAN_COLOR = [103.062623801, 115.902882574, 123.151630838]
parser = argparse.ArgumentParser(description='Train or eval SSD model with goodies.')
# The name of your experiment
parser.add_argument("--run_name", type=str, required=True)
# The number of checkpoint (in thousands) you want to restore from
parser.add_argument("--ckpt", default=0, type=int)
# The dataset you want to train/test the model on
parser.add_argument("--dataset", default='voc07', choices=['voc07', 'voc12-train', 'voc12-val',
'voc12-trainval', 'voc07+12',
'coco', 'voc07+12-segfull',
'voc07+12-segmentation',
'coco-seg'])
# The split of the dataset you want to train/test on
parser.add_argument("--split", default='train', choices=['train', 'test', 'val', 'trainval',
'train-segmentation', 'val-segmentation',
'train-segmentation-original',
'valminusminival2014', 'minival2014',
'test-dev2015', 'test2015'])
# The network you use as a base network (backbone)
parser.add_argument("--trunk", default='resnet50', choices=['resnet50', 'vgg16'])
# Either the last layer has a stride of 4 of of 8, if True an extra layer is appended
parser.add_argument("--x4", default=False, action='store_true')
# Which image size to chose for training
parser.add_argument("--image_size", default=300, type=int)
# If True, shares the weights for classifiers of bboxes on each scale
parser.add_argument("--head", default='nonshared', choices=['shared', 'nonshared'])
# Sampling method for deep features resizing
parser.add_argument("--resize", default='bilinear', choices=['bilinear', 'nearest'])
# The number of feature maps in the layers appended to a base network
parser.add_argument("--top_fm", default=512, type=int)
# The size of conv kernel in classification/localization mapping for bboxes
parser.add_argument("--det_kernel", default=3, type=int)
# TRAINING FLAGS
parser.add_argument("--max_iterations", default=1000000, type=int)
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--weight_decay", default=5e-5, type=float)
parser.add_argument("--bn_decay", default=0.9, type=float)
parser.add_argument("--learning_rate", default=1e-4, type=float)
# For training with warmup, chose the number of steps
parser.add_argument("--warmup_step", default=0, type=int)
#For training with warmup, chose the starting learning rate
parser.add_argument("--warmup_lr", default=1e-5, type=float)
# Optimizer of choice
parser.add_argument("--optimizer", default='adam', choices=['adam', 'nesterov'])
# To what ratio of images apply zoomout data augmentation
parser.add_argument("--zoomout_prob", default=0.5, type=float)
# A list of steps where after each a learning rate is multiplied by 1e-1
parser.add_argument("--lr_decay", default=[], nargs='+', type=int)
# Random initialization of a base network
parser.add_argument("--random_trunk_init", default=False, action='store_true')
# SEGMENTATION/DETECTION FLAGS
# if you want a net to perform detection
parser.add_argument("--detect", default=False, action='store_true')
# if you want a network to perform segmentation
parser.add_argument("--segment", default=False, action='store_true')
# Nope
parser.add_argument("--no_seg_gt", default=False, action='store_true')
# The size of intermediate representations before concatenating and segmenting
parser.add_argument("--n_base_channels", default=64, type=int)
# The size of the conv filter used to map feature maps to intermediate representations before segmentation
parser.add_argument("--seg_filter_size", default=1, type=int, choices=[1, 3])
# EVALUATION FLAGS
# Automatic evaluation of several checkpoints
parser.add_argument("--batch_eval", default=False, action='store_true')
# number of checkpoint in thousands you want to start the evaluation from
parser.add_argument("--min_ckpt", default=0, type=int)
# a step between checkpoints to evaluate in thousands
parser.add_argument("--step", default=1, type=int)
# How many top scoring bboxes per category are passed to nms
parser.add_argument("--top_k_nms", default=400, type=int)
# How many top scoring bboxes per category are left after nms
parser.add_argument("--top_k_after_nms", default=50, type=int)
# How many top scoring bboxes in total are left after nms for an image
parser.add_argument("--top_k_post_nms", default=200, type=int)
# The threshold of confidence above which a bboxes is considered as a class example
parser.add_argument("--conf_thresh", default=0.01, type=float)
# IoU threshold for nms
parser.add_argument("--nms_thresh", default=0.45, type=float)
# IoU threshold positive criteria in PASCAL VOC challenge
parser.add_argument("--voc_iou_thresh", default=0.50, type=float)
# Filter candidate boxes by thresholding the score.
# Needed to make clean final detection results.
parser.add_argument("--eval_min_conf", default=0.0, type=float)
# First n processed images will be saved with regressed bboxes/masks drawn
parser.add_argument("--save_first_n", default=0, type=int)
args = parser.parse_args()
train_dir = os.path.join(CKPT_ROOT, args.run_name)
# Configurations for data augmentation
data_augmentation_config = {
'X_out': 4,
'brightness_prob': 0.5,
'brightness_delta': 0.125,
'contrast_prob': 0.5,
'contrast_delta': 0.5,
'hue_prob': 0.5,
'hue_delta': 0.07,
'saturation_prob': 0.5,
'saturation_delta': 0.5,
'sample_jaccards': [0.0, 0.1, 0.3, 0.5, 0.7, 0.9],
'flip_prob': 0.5,
'crop_max_tries': 50,
'zoomout_color': [x/255.0 for x in reversed(MEAN_COLOR)],
}
config_vgg = {
'image_size': 300,
'smallest_scale': 0.1,
'min_scale': 0.2,
'max_scale': 0.9,
'layers': ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2'],
'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
'prior_variance': [0.1, 0.1, 0.2, 0.2],
'train_augmentation': data_augmentation_config,
'fm_sizes': [37, 18, 9, 5, 3, 1],
}
evaluation_logfile = '1evaluations.txt'
normAP_constant = 400
config_resnet_ssd512_x4 = {'image_size': 512,
'smallest_scale': 0.02,
'min_scale': 0.08,
'max_scale': 0.95,
'layers': ['ssd_back/block_rev1', 'ssd_back/block_rev2', 'ssd_back/block_rev3', 'ssd_back/block_rev4', 'ssd_back/block_rev5', 'ssd_back/block_rev6', 'ssd_back/block_rev7', 'ssd/pool6'],
'aspect_ratios': [[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]],
'train_augmentation': data_augmentation_config,
'prior_variance': [0.1, 0.1, 0.2, 0.2],
'fm_sizes': [128, 64, 32, 16, 8, 4, 2, 1],
}
config_resnet_ssd512_nox4 = {'image_size': 512,
'smallest_scale': 0.04,
'min_scale': 0.1,
'max_scale': 0.95,
'layers': ['ssd_back/block_rev2', 'ssd_back/block_rev3', 'ssd_back/block_rev4', 'ssd_back/block_rev5', 'ssd_back/block_rev6', 'ssd_back/block_rev7', 'ssd/pool6'],
'aspect_ratios': [[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]],
'train_augmentation': data_augmentation_config,
'prior_variance': [0.1, 0.1, 0.2, 0.2],
'fm_sizes': [64, 32, 16, 8, 4, 2, 1],
}
config_resnet_nox4 = {'image_size': 300,
'smallest_scale': 0.1,
'min_scale': 0.2,
'max_scale': 0.95,
'layers': ['ssd_back/block_rev2', 'ssd_back/block_rev3', 'ssd_back/block_rev4', 'ssd_back/block_rev5', 'ssd_back/block_rev6' , 'ssd/pool6'],
'aspect_ratios': [[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]],
'train_augmentation': data_augmentation_config,
'prior_variance': [0.1, 0.1, 0.2, 0.2],
'fm_sizes': [38, 19, 10, 5, 3, 1],
}
config_resnet_x4 = {'image_size': 300,
'smallest_scale': 0.04,
'min_scale': 0.1,
'max_scale': 0.95,
'layers': [ 'ssd_back/block_rev1', 'ssd_back/block_rev2', 'ssd_back/block_rev3', 'ssd_back/block_rev4', 'ssd_back/block_rev5', 'ssd_back/block_rev6', 'ssd/pool6'],
'aspect_ratios': [[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]],
'train_augmentation': data_augmentation_config,
'prior_variance': [0.1, 0.1, 0.2, 0.2],
'fm_sizes': [75, 38, 19, 10, 5, 3, 1],
}
if args.trunk == 'resnet50' and args.x4 and args.image_size == 300:
config = config_resnet_x4
if args.trunk == 'resnet50' and args.x4 and args.image_size == 512:
config = config_resnet_ssd512_x4
if args.trunk == 'vgg16' and args.x4:
raise NotImplementedError
if args.trunk in ['resnet50', 'resnet101'] and not args.x4 and args.image_size == 300:
config = config_resnet_nox4
if args.trunk in ['resnet50', 'resnet101'] and not args.x4 and args.image_size == 512:
config = config_resnet_ssd512_nox4
if args.trunk == 'vgg16' and not args.x4:
config = config_vgg
def get_logging_config(run):
return {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': '%(asctime)s [%(levelname)s]: %(message)s'
},
'short': {
'format': '[%(levelname)s]: %(message)s'
},
},
'handlers': {
'default': {
'level': 'INFO',
'formatter': 'short',
'class': 'logging.StreamHandler',
},
'file': {
'level': 'DEBUG',
'formatter': 'standard',
'class': 'logging.FileHandler',
'filename': LOGS+run+'.log'
},
},
'loggers': {
'': {
'handlers': ['default', 'file'],
'level': 'DEBUG',
'propagate': True
},
}
}