-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
135 lines (114 loc) · 5.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from dataset import SketchDataset
from model import *
from shutil import copyfile
from utils import *
import argparse
import os
from torch.utils.data import DataLoader
import torch.nn.functional as F
from tqdm import tqdm
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, default='test', help='The name of this exp')
parser.add_argument('--config_file', type=str, default='configs/config.yml')
parser.add_argument('--GPU_ids', type=str, default='0')
parser.add_argument('--ckpt_path', type=str, default='./ckpt')
args = parser.parse_args()
args.ckpt_path = os.path.join(args.ckpt_path, args.name)
os.makedirs(args.ckpt_path, exist_ok=True)
config_path = os.path.join(args.ckpt_path, 'config.yml')
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU_ids
copyfile(args.config_file, config_path)
config = Config(config_path)
set_seed(42)
device = torch.device("cuda")
train_dataset = SketchDataset(config, config.train_flist, augment=True, training=True)
val_dataset = SketchDataset(config, config.val_flist, augment=False, training=False)
train_loader = DataLoader(train_dataset, shuffle=True, pin_memory=True,
batch_size=config.batch_size, num_workers=16)
val_loader = DataLoader(val_dataset, shuffle=False, pin_memory=True,
batch_size=config.batch_size, num_workers=4)
sample_iterator = val_dataset.create_iterator(config.sample_size)
# model = StructureUpsampling()
model = StructureUpsampling4()
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
val_path = os.path.join(args.ckpt_path, 'validation')
samples_path = os.path.join(args.ckpt_path, 'samples')
create_dir(val_path)
create_dir(samples_path)
epoch = 0
keep_training = True
max_iteration = int(float((config.max_iters)))
total = len(train_dataset)
iteration = 0
best_loss = 9999
while keep_training:
epoch += 1
progbar = Progbar(total, width=20, stateful_metrics=['epoch', 'iter'])
for items in train_loader:
model.train()
iteration += 1
for k in items:
if k != 'name':
items[k] = items[k].to(device)
line_out, line_in = model.forward(items['line_small'])
line_loss1 = F.binary_cross_entropy_with_logits(line_out, items['line_large'])
line_loss2 = F.binary_cross_entropy_with_logits(line_in, items['line_small_gt'])
optimizer.zero_grad()
loss = line_loss1 + line_loss2
loss.backward()
optimizer.step()
progbar.add(len(items['edge_small']), values=[("epoch", epoch),
("iter", iteration),
("loss", loss.item())])
if iteration % config.sample_interval == 0:
model.eval()
with torch.no_grad():
items = next(sample_iterator)
for k in items:
if k != 'name':
items[k] = items[k].to(device)
edge_out, edge_in = model.forward(items['edge_small'])
line_out, line_in = model.forward(items['line_small'])
edge_out = torch.sigmoid(edge_out)
line_out = torch.sigmoid(line_out)
edge_in = torch.sigmoid(edge_in)
line_in = torch.sigmoid(line_in)
image_per_row = 2 if config.sample_size > 6 else 1
images = stitch_images(postprocess(items['edge_small'].cpu(), size=512),
postprocess(items['edge_large'].cpu(), size=512),
postprocess(edge_out.cpu(), size=512),
postprocess(edge_in.cpu(), size=512),
postprocess(items['line_small'].cpu(), size=512),
postprocess(items['line_large'].cpu(), size=512),
postprocess(line_out.cpu(), size=512),
postprocess(line_in.cpu(), size=512),
img_per_row=image_per_row)
name = os.path.join(samples_path, str(iteration).zfill(5) + ".jpg")
print('\nsaving sample ' + name)
images.save(name)
if iteration % config.save_interval == 0:
torch.save({'iteration': iteration, 'model': model.state_dict(),
'optimizer': optimizer.state_dict()}, os.path.join(args.ckpt_path, 'last.pth'))
if iteration % config.eval_interval == 0:
model.eval()
eval_losses = []
with torch.no_grad():
for items in tqdm(val_loader):
for k in items:
if k != 'name':
items[k] = items[k].to(device)
line_out, line_in = model.forward(items['line_small'])
line_loss1 = F.binary_cross_entropy_with_logits(line_out, items['line_large'])
line_loss2 = F.binary_cross_entropy_with_logits(line_in, items['line_small_gt'])
loss = line_loss1 + line_loss2
eval_losses.append(loss.item())
eval_loss = np.mean(eval_losses)
if eval_loss < best_loss:
best_loss = eval_loss
torch.save({'iteration': iteration, 'model': model.state_dict(), 'eval_loss': best_loss,
'optimizer': optimizer.state_dict()}, os.path.join(args.ckpt_path, 'best.pth'))
print('Eval loss:', eval_loss, 'Best loss:', best_loss)
if iteration > max_iteration:
break