-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
28 lines (24 loc) · 810 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import logging as log
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
# build the model
def build_model(is_train):
n_inputs = 517
n_classes = 3
n_hidden = (600, 600,)
dropout = 0.2
activation = 'relu'
out_activation = 'softmax'
model = Sequential()
for i, n_neurons in enumerate(n_hidden):
# setup the input layer
if i == 0:
model.add(Dense(n_neurons, input_shape = (n_inputs,), activation = activation))
else:
model.add(Dense(n_neurons, activation = activation))
# add dropout
if is_train:
model.add(Dropout(dropout))
# setup output layer
model.add(Dense(n_classes, activation = out_activation))
return model