Thank you for your interest in contributing to Rust! There are many ways to contribute, and we appreciate all of them. This document is a bit long, so here's links to the major sections:
- Feature Requests
- Bug Reports
- The Build System
- Pull Requests
- Writing Documentation
- Issue Triage
- Out-of-tree Contributions
- Helpful Links and Information
If you have questions, please make a post on internals.rust-lang.org or hop on #rust-internals.
As a reminder, all contributors are expected to follow our Code of Conduct.
To request a change to the way that the Rust language works, please open an issue in the RFCs repository rather than this one. New features and other significant language changes must go through the RFC process.
While bugs are unfortunate, they're a reality in software. We can't fix what we don't know about, so please report liberally. If you're not sure if something is a bug or not, feel free to file a bug anyway.
If you believe reporting your bug publicly represents a security risk to Rust users, please follow our instructions for reporting security vulnerabilities.
If you have the chance, before reporting a bug, please search existing issues, as it's possible that someone else has already reported your error. This doesn't always work, and sometimes it's hard to know what to search for, so consider this extra credit. We won't mind if you accidentally file a duplicate report.
Opening an issue is as easy as following this link and filling out the fields. Here's a template that you can use to file a bug, though it's not necessary to use it exactly:
<short summary of the bug>
I tried this code:
<code sample that causes the bug>
I expected to see this happen: <explanation>
Instead, this happened: <explanation>
## Meta
`rustc --version --verbose`:
Backtrace:
All three components are important: what you did, what you expected, what
happened instead. Please include the output of rustc --version --verbose
,
which includes important information about what platform you're on, what
version of Rust you're using, etc.
Sometimes, a backtrace is helpful, and so including that is nice. To get
a backtrace, set the RUST_BACKTRACE
environment variable to a value
other than 0
. The easiest way
to do this is to invoke rustc
like this:
$ RUST_BACKTRACE=1 rustc ...
Rust's build system allows you to bootstrap the compiler, run tests & benchmarks, generate documentation, install a fresh build of Rust, and more. It's your best friend when working on Rust, allowing you to compile & test your contributions before submission.
The build system lives in the src/bootstrap
directory in the
project root. Our build system is itself written in Rust and is based on Cargo
to actually build all the compiler's crates. If you have questions on the build
system internals, try asking in #rust-internals
.
Before you can start building the compiler you need to configure the build for your system. In most cases, that will just mean using the defaults provided for Rust.
To change configuration, you must copy the file config.toml.example
to config.toml
in the directory from which you will be running the build, and
change the settings provided.
There are large number of options provided in this config file that will alter the configuration used in the build process. Some options to note:
ccache = true
- Use ccache when building llvm
compiler-docs = true
- Build compiler documentation
debuginfo = true
- Build a compiler with debuginfooptimize = false
- Disable optimizations to speed up compilation of stage1 rust
For more options, the config.toml
file contains commented out defaults, with
descriptions of what each option will do.
Note: Previously the ./configure
script was used to configure this
project. It can still be used, but it's recommended to use a config.toml
file. If you still have a config.mk
file in your directory - from
./configure
- you may need to delete it for config.toml
to work.
The build system uses the x.py
script to control the build process. This script
is used to build, test, and document various parts of the compiler. You can
execute it as:
python x.py build
On some systems you can also use the shorter version:
./x.py build
To learn more about the driver and top-level targets, you can execute:
python x.py --help
The general format for the driver script is:
python x.py <command> [<directory>]
Some example commands are build
, test
, and doc
. These will build, test,
and document the specified directory. The second argument, <directory>
, is
optional and defaults to working over the entire compiler. If specified,
however, only that specific directory will be built. For example:
# build the entire compiler
python x.py build
# build all documentation
python x.py doc
# run all test suites
python x.py test
# build only the standard library
python x.py build src/libstd
# test only one particular test suite
python x.py test src/test/rustdoc
# build only the stage0 libcore library
python x.py build src/libcore --stage 0
You can explore the build system through the various --help
pages for each
subcommand. For example to learn more about a command you can run:
python x.py build --help
To learn about all possible rules you can execute, run:
python x.py build --help --verbose
Note: Previously ./configure
and make
were used to build this project.
They are still available, but x.py
is the recommended build system.
Some common invocations of x.py
are:
x.py build --help
- show the help message and explain the subcommandx.py build src/libtest --stage 1
- build up to (and including) the first stage. For most cases we don't need to build the stage2 compiler, so we can save time by not building it. The stage1 compiler is a fully functioning compiler and (probably) will be enough to determine if your change works as expected.x.py build src/rustc --stage 1
- This will build just rustc, without libstd. This is the fastest way to recompile after you changed only rustc source code. Note however that the resulting rustc binary won't have a stdlib to link against by default. You can build libstd once withx.py build src/libstd
, but it is only guaranteed to work if recompiled, so if there are any issues recompile it.x.py test
- build the full compiler & run all tests (takes a while). This is what gets run by the continuous integration system against your pull request. You should run this before submitting to make sure your tests pass & everything builds in the correct manner.x.py test src/libstd --stage 1
- test the standard library without recompiling stage 2.x.py test src/test/run-pass --test-args TESTNAME
- Run a matching set of tests.TESTNAME
should be a substring of the tests to match against e.g. it could be the fully qualified test name, or just a part of it.TESTNAME=collections::hash::map::test_map::test_capacity_not_less_than_len
orTESTNAME=test_capacity_not_less_than_len
.
x.py test src/test/run-pass --stage 1 --test-args <substring-of-test-name>
- Run a single rpass test with the stage1 compiler (this will be quicker than running the command above as we only build the stage1 compiler, not the entire thing). You can also leave off the directory argument to run all stage1 test types.x.py test src/libcore --stage 1
- Run stage1 tests inlibcore
.x.py test src/tools/tidy
- Check that the source code is in compliance with Rust's style guidelines. There is no official document describing Rust's full guidelines as of yet, but basic rules like 4 spaces for indentation and no more than 99 characters in a single line should be kept in mind when writing code.
If you use Rustup to manage your rust install, it has a feature called "custom
toolchains" that you can use to access your newly-built compiler
without having to install it to your system or user PATH. If you've run python x.py build
, then you can add your custom rustc to a new toolchain like this:
rustup toolchain link <name> build/<host-triple>/stage2
Where <host-triple>
is the build triple for the host (the triple of your
computer, by default), and <name>
is the name for your custom toolchain. (If you
added --stage 1
to your build command, the compiler will be in the stage1
folder instead.) You'll only need to do this once - it will automatically point
to the latest build you've done.
Once this is set up, you can use your custom toolchain just like any other. For
example, if you've named your toolchain local
, running cargo +local build
will
compile a project with your custom rustc, setting rustup override set local
will
override the toolchain for your current directory, and cargo +local doc
will use
your custom rustc and rustdoc to generate docs. (If you do this with a --stage 1
build, you'll need to build rustdoc specially, since it's not normally built in
stage 1. python x.py build --stage 1 src/libstd src/tools/rustdoc
will build
rustdoc and libstd, which will allow rustdoc to be run with that toolchain.)
Pull requests are the primary mechanism we use to change Rust. GitHub itself has some great documentation on using the Pull Request feature. We use the "fork and pull" model described here, where contributors push changes to their personal fork and create pull requests to bring those changes into the source repository.
Please make pull requests against the master
branch.
Compiling all of ./x.py test
can take a while. When testing your pull request,
consider using one of the more specialized ./x.py
targets to cut down on the
amount of time you have to wait. You need to have built the compiler at least
once before running these will work, but that’s only one full build rather than
one each time.
$ python x.py test --stage 1
is one such example, which builds just rustc
, and then runs the tests. If
you’re adding something to the standard library, try
$ python x.py test src/libstd --stage 1
Please make sure your pull request is in compliance with Rust's style guidelines by running
$ python x.py test src/tools/tidy
Make this check before every pull request (and every new commit in a pull request) ; you can add git hooks before every push to make sure you never forget to make this check.
All pull requests are reviewed by another person. We have a bot, @rust-highfive, that will automatically assign a random person to review your request.
If you want to request that a specific person reviews your pull request,
you can add an r?
to the message. For example, Steve usually reviews
documentation changes. So if you were to make a documentation change, add
r? @steveklabnik
to the end of the message, and @rust-highfive will assign @steveklabnik instead of a random person. This is entirely optional.
After someone has reviewed your pull request, they will leave an annotation
on the pull request with an r+
. It will look something like this:
@bors: r+ 38fe8d2
This tells @bors, our lovable integration bot, that your pull request has
been approved. The PR then enters the merge queue, where @bors
will run all the tests on every platform we support. If it all works out,
@bors will merge your code into master
and close the pull request.
Speaking of tests, Rust has a comprehensive test suite. More information about it can be found here.
Currently building Rust will also build the following external projects:
If your changes break one of these projects, you need to fix them by opening
a pull request against the broken project. When you have opened a pull request,
you can disable the tool via src/tools/toolstate.toml
.
It can also be more convenient during development to set submodules = false
in the config.toml
to prevent x.py
from resetting to the original branch.
Documentation improvements are very welcome. The source of doc.rust-lang.org
is located in src/doc
in the tree, and standard API documentation is generated
from the source code itself.
Documentation pull requests function in the same way as other pull requests,
though you may see a slightly different form of r+
:
@bors: r+ 38fe8d2 rollup
That additional rollup
tells @bors that this change is eligible for a 'rollup'.
To save @bors some work, and to get small changes through more quickly, when
@bors attempts to merge a commit that's rollup-eligible, it will also merge
the other rollup-eligible patches too, and they'll get tested and merged at
the same time.
To find documentation-related issues, sort by the T-doc label.
You can find documentation style guidelines in RFC 1574.
In many cases, you don't need a full ./x.py doc
. You can use rustdoc
directly
to check small fixes. For example, rustdoc src/doc/reference.md
will render
reference to doc/reference.html
. The CSS might be messed up, but you can
verify that the HTML is right.
Sometimes, an issue will stay open, even though the bug has been fixed. And sometimes, the original bug may go stale because something has changed in the meantime.
It can be helpful to go through older bug reports and make sure that they are still valid. Load up an older issue, double check that it's still true, and leave a comment letting us know if it is or is not. The least recently updated sort is good for finding issues like this.
Contributors with sufficient permissions on the Rust repo can help by adding labels to triage issues:
-
Yellow, A-prefixed labels state which area of the project an issue relates to.
-
Magenta, B-prefixed labels identify bugs which are blockers.
-
Dark blue, beta- labels track changes which need to be backported into the beta branches.
-
Light purple, C-prefixed labels represent the category of an issue.
-
Green, E-prefixed labels explain the level of experience necessary to fix the issue.
-
The dark blue final-comment-period label marks bugs that are using the RFC signoff functionality of rfcbot and are currenty in the final comment period.
-
Red, I-prefixed labels indicate the importance of the issue. The I-nominated label indicates that an issue has been nominated for prioritizing at the next triage meeting.
-
The purple metabug label marks lists of bugs collected by other categories.
-
Purple gray, O-prefixed labels are the operating system or platform that this issue is specific to.
-
Orange, P-prefixed labels indicate a bug's priority. These labels are only assigned during triage meetings, and replace the I-nominated label.
-
The gray proposed-final-comment-period label marks bugs that are using the RFC signoff functionality of rfcbot and are currently awaiting signoff of all team members in order to enter the final comment period.
-
Pink, regression-prefixed labels track regressions from stable to the release channels.
-
The light orange relnotes label marks issues that should be documented in the release notes of the next release.
-
Gray, S-prefixed labels are used for tracking the status of pull requests.
-
Blue, T-prefixed bugs denote which team the issue belongs to.
If you're looking for somewhere to start, check out the E-easy tag.
There are a number of other ways to contribute to Rust that don't deal with this repository.
Answer questions in #rust, or on users.rust-lang.org, or on StackOverflow.
Participate in the RFC process.
Find a requested community library, build it, and publish it to Crates.io. Easier said than done, but very, very valuable!
For people new to Rust, and just starting to contribute, or even for more seasoned developers, some useful places to look for information are:
- Rust Forge contains additional documentation, including write-ups of how to achieve common tasks
- The Rust Internals forum, a place to ask questions and discuss Rust's internals
- The generated documentation for rust's compiler
- The rust reference, even though it doesn't specifically talk about Rust's internals, it's a great resource nonetheless
- Although out of date, Tom Lee's great blog article is very helpful
- rustaceans.org is helpful, but mostly dedicated to IRC
- The Rust Compiler Testing Docs
- For @bors, this cheat sheet is helpful (Remember to replace
@homu
with@bors
in the commands that you use.) - Google! (search only in Rust Documentation to find types, traits, etc. quickly)
- Don't be afraid to ask! The Rust community is friendly and helpful.