forked from randlab/hytool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
htj_dmo.m
57 lines (47 loc) · 1.61 KB
/
htj_dmo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
%% Confined aquifer with leakage
% This demonstrates the interpretation of a pumping test in confined
% aquifer with leakage with the% hantush and Jacob (1955) model
%
% MIT License
% Copyright (c) 2017 Philippe Renard - University of Neuchâtel (CHYN)
%%
% The data set for this example comes from the following reference:
% Hall, P. Water well and aquifer test analysis 1996, Water Resources
% Publications, LLC, 412 pp. Example Fig 11.14 p.267-268
%
% Let us first load the data and plot them.
[t,s]=ldf('htj_ds1.dat');
diagnostic(t,s)
%%
% We then define the values of the parameters that are required for the
% interpretation:
%
% t = measured time
% s = measured drawdown
% d(1) = Q =6.309 e-3 m3/s % Pumping rate
% d(2) = r =3.048 m % Distance to the pumping well
% d(3) = e'=6.096 m % Thickness of the aquitard
%%
% Once the data have been loaded and the parameter defined, we can
% interpret the data. We do that as usually in two steps. First the
% parameters p of the model are estimated with the function htj_gss. Then
% we used to find an optimum fit.
%
p0=htj_gss(t,s); % The initial guess is incorrect
trial('htj',p0,t,s)
p=fit('htj',p0,t,s);
%%
% We can then display the result of the interpretation.
% Hytool find that the folowing values for the transmissivity and
% storativity:
%
% T: 1.4e-004 m2/s and S: 1 e-04
%
htj_rpt(p,t,s,[6.309e-3,3.048,6.096],'Hall example - automatic fit')
%%
% The results are in reasonable agreement with the values found by Hall
% (1996):
% T = 7.77 e-5 m2/s
% S = 5.0193 e-4
%%
% We then find that the fits are rather similar and both acceptable.