-
Notifications
You must be signed in to change notification settings - Fork 3
/
model_funcs.py
843 lines (724 loc) · 29.3 KB
/
model_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
"""
Supplementary functions needed to do the MCMC run and analysis,
including loading the isochrones.
"""
# TODO: switch out to a faster Mandel-Agol when needed
from glob import glob
import numpy as np
import sys
from scipy import interpolate
import numpy.polynomial.polynomial as poly
from mandel_agol import mandel_agol
def loadisos():
"""
Loads all objects needed to interpolate and analyze the isochrones.
All inputs are listed in the input file to make things easier and
because they are referenced elsewhere.
Returns
-------
isobundle : tuple
(magobs, magerr, maglam, magname, interps, limits, fehs,
ages, maxmasses, wdmagfunc)
"""
# get the inputs
from inputs import (isodir, inds, magname, magobs, magerr, maglam,
wdfiles, wdinds)
import warnings
# we want these to be calculated by the isochrones too
magname.append('Rad')
magname.append('logg')
magname.append('teff')
magname = np.array(magname)
padsdssfiles = isodir + '*sdss'
padwisefiles = isodir + '*wise'
# find the isochrones and make sure you have equivalent ones
# in each filter system
sdssisos = glob(padsdssfiles)
sdssisos.sort()
wiseisos = glob(padwisefiles)
wiseisos.sort()
if len(sdssisos) != len(wiseisos):
print('Error! Mismatched isochrones.')
sys.exit(1)
if len(sdssisos) == 0:
print('Cannot find isochrones!')
# load and concatenate the isochrones
for ii in np.arange(len(sdssisos)):
iso1 = np.loadtxt(sdssisos[ii])
iso2 = np.loadtxt(wiseisos[ii])
# first 8 columns are the same, then you get into the bands
# next 3 are repeats of JHK, so ignore those too
together = np.concatenate((iso1, iso2[:, 11:]), axis=1)
if ii == 0:
fulliso = together * 1.
else:
fulliso = np.concatenate((fulliso, together))
# pull out the indices in the list we want to evaluate
maginds = []
for ii in magname:
maginds.append(inds[ii])
maginds = np.array(maginds)
maginds.astype(int)
# convert from Padova Z into metallicity
zs = fulliso[:, inds['feh']]
fesol = 0.0147
hsol = 0.7106
hnew = 1. - 0.2485 - 2.78 * zs
fulliso[:, inds['feh']] = np.log10((zs/hnew)/(fesol/hsol))
# calculate radii two different ways
G = 6.67e-8 # cgs units
Msun = 1.9884e33 # g
Rsun = 6.955e10 # cm
R = np.sqrt(G * fulliso[:, inds['M']] * Msun /
10.**fulliso[:, inds['logg']]) / Rsun
sigma = 5.6704e-5 # cgs
Lsun = 3.846e33 # erg/s
R2 = np.sqrt(10.**fulliso[:, inds['lum']]*Lsun /
(4.*np.pi*sigma*(10.**fulliso[:, inds['teff']])**4.)) / Rsun
# use the average of these two radii measures
R = (R + R2)/2.
# add this to the isochrone
fulliso = np.concatenate((fulliso, R[:, np.newaxis]), axis=1)
# what are the metallicities and ages in this set?
fehs = np.unique(fulliso[:, inds['feh']])
ages = np.unique(fulliso[:, inds['age']])
minfeh = fehs.min()
maxfeh = fehs.max()
minage = ages.min()
maxage = ages.max()
# set up the mass interpolations
interps = np.zeros((len(fehs), len(ages)), dtype=object)
maxmasses = np.zeros((len(fehs), len(ages)))
# for each Fe/H and age, create a mass interpolation function and
# record the maximum mass still alive
# interps[ii,jj](M) will return the desired parameters
# (listed in magname) at a given mass
for ii in np.arange(len(fehs)):
for jj in np.arange(len(ages)):
small = np.where((fulliso[:, inds['feh']] == fehs[ii]) &
(fulliso[:, inds['age']] == ages[jj]))[0]
interps[ii, jj] = interpolate.interp1d(
fulliso[small, inds['M']], fulliso[small][:, maginds],
axis=0, bounds_error=False)
maxmasses[ii, jj] = fulliso[small, inds['M']].max()
# set up the WD section
files = glob(wdfiles)
if len(files) == 0:
print('Warning! White Dwarf models not found!')
for ct, ii in enumerate(files):
# ignore the warnings that header lines aren't the same length
with warnings.catch_warnings():
warnings.simplefilter('ignore')
iwdmods = np.genfromtxt(ii, skip_header=2, invalid_raise=False)
# pull the mass out of the file name
imass = float(ii[-3:])
# only grab the H WDs, ignore the He ones
iwdmods = iwdmods[:np.diff(iwdmods[:, wdinds['teff']]).argmin()+1, :]
# all these have the same mass
imass = np.ones(len(iwdmods[:, 0])) * imass
if ct == 0:
wdmods = iwdmods * 1.
mass = imass * 1.
else:
mass = np.concatenate((mass, imass))
wdmods = np.concatenate((wdmods, iwdmods))
# get the Kp magnitude from the g,r,i bands
kpmag = np.zeros(len(wdmods[:, 0]))
blue = wdmods[:, wdinds['g']] - wdmods[:, wdinds['r']] <= 0.3
kpmag[blue] = (0.25 * wdmods[blue, wdinds['g']] +
0.75 * wdmods[blue, wdinds['r']])
kpmag[~blue] = (0.3 * wdmods[~blue, wdinds['g']] +
0.7 * wdmods[~blue, wdinds['i']])
# WD models contains the WD mass, age, and Kp magnitude
wdmodels = np.zeros((len(mass), 3))
wdmodels[:, 0] = mass
# log age like everything else
wdmodels[:, 1] = np.log10(wdmods[:, wdinds['age']])
wdmodels[:, 2] = kpmag
# get an interpolator of Kp magnitudes based on age and mass
wdmagfunc = interpolate.LinearNDInterpolator(wdmodels[:, 0:2],
wdmodels[:, 2])
# bounds where we trust the results
limits = (minfeh, maxfeh, minage, maxage)
# bundle all the important bits of the model together to feed
# to functions that need them
isobundle = (magobs, magerr, maglam, magname, interps, limits, fehs,
ages, maxmasses, wdmagfunc)
return isobundle
def getwdmodels():
from inputs import wdfiles, wdinds
import warnings
# set up the WD section
files = glob(wdfiles)
if len(files) == 0:
print('Warning! White Dwarf models not found!')
for ct, ii in enumerate(files):
# ignore the warnings that header lines aren't the same length
with warnings.catch_warnings():
warnings.simplefilter('ignore')
iwdmods = np.genfromtxt(ii, skip_header=2, invalid_raise=False)
# pull the mass out of the file name
imass = float(ii[-3:])
# only grab the H WDs, ignore the He ones
iwdmods = iwdmods[:np.diff(iwdmods[:, wdinds['teff']]).argmin()+1, :]
# all these have the same mass
imass = np.ones(len(iwdmods[:, 0])) * imass
if ct == 0:
wdmods = iwdmods * 1.
mass = imass * 1.
else:
mass = np.concatenate((mass, imass))
wdmods = np.concatenate((wdmods, iwdmods))
# WD models contains the WD mass, age, and Kp magnitude
wdmodels = np.zeros((len(mass), 3))
wdmodels[:, 0] = mass
# log age like everything else
wdmodels[:, 1] = np.log10(wdmods[:, wdinds['age']])
wdmodels[:, 2] = wdmods[:, wdinds['teff']]
return wdmodels
def initrange(p):
"""
Return initial error estimates in each parameter.
Used to start the MCMC chains in a small ball near an estimated solution.
Input
-----
p : ndarray
Model parameters. See light_curve_model for the order.
Returns
-------
errs : ndarray
The standard deviation to use in each parameter
for MCMC walker initialization.
"""
if len(p) == 14:
return np.array([2.41373687e-04, 2.15625144e-03, 5.42134862e-05,
4.95601162e-02, 4.33065931e-02, 1.19787163e-01,
1.03564141e-01, 9.25556734e-02, 2.34386318e-01,
2.34386318e-01, 2.34386318e+01, 1.34386318e-03,
5.26059466e+00, 1.00059466e-02])
if len(p) == 16:
return np.array([2.41373687e-04, 2.15625144e-03, 5.42134862e-05,
4.95601162e-02, 4.33065931e-02, 1.19787163e-01,
1.03564141e-01, 9.25556734e-02, 2.34386318e-01,
2.34386318e-01, 2.34386318e+01, 1.34386318e-03,
5.26059466e+00, 1.00059466e-02, 0.1, 0.1])
def isointerp(M, FeH, age, isobundle, testvalid=False):
"""
Interpolate the isochrones to predict the desired observables
(listed in the variable magname) at a particular mass, age, and
Fe/H. We find the bounding 4 combinations of Fe/H and age in the
isochrone grid, and predict the observables at these 4 (Fe/H,age)
combinations at the input mass using the mass interpolation
[e.g. interps[Fe/H,age](Mass)]. We then perform a bilinear
interpolation of these 4 (Fe/H,age) locations to get to the
predicted observables at the input Fe/H and age.
Input
-----
M : float
Input mass (solar)
FeH : float
Input metallicity [Fe/H]
age : float
Input age (log10(yr))
isobundle : tuple
Contains everything needed for the isochrones
testvalid : bool, optional
If True, returns a boolean indicating whether this combination of
inputs is within the bounds of the isochrones.
Returns
-------
result : ndarray
Interpolated values of all parameters listed in magname.
"""
# unpack the model bundle
(magobs, magerr, maglam, magname, interps, limits, fehs, ages,
maxmasses, wdmagfunc) = isobundle
minfeh, maxfeh, minage, maxage = limits
# make sure this is a valid set of inputs
if age >= minage and age <= maxage and FeH >= minfeh and FeH <= maxfeh:
# what grid points of Fe/H and age is this input between
fehinds = np.digitize([FeH], fehs)
fehinds = np.concatenate((fehinds-1, fehinds))
ageinds = np.digitize([age], ages)
ageinds = np.concatenate((ageinds-1, ageinds))
# bilinear interpolation done by hand
fehdiff = np.diff(fehs[fehinds])[0]
agediff = np.diff(ages[ageinds])[0]
# step 1
interp1 = (interps[fehinds[0], ageinds[0]](M) *
(fehs[fehinds[1]] - FeH) +
interps[fehinds[1], ageinds[0]](M) *
(FeH - fehs[fehinds[0]])) / fehdiff
# step 2
interp2 = (interps[fehinds[0], ageinds[1]](M) *
(fehs[fehinds[1]] - FeH) +
interps[fehinds[1], ageinds[1]](M) *
(FeH - fehs[fehinds[0]])) / fehdiff
# step 3 of the bilinear interpolation
result = ((interp1 * (ages[ageinds[1]] - age) +
interp2 * (age - ages[ageinds[0]])) / agediff)
# otherwise return bad values
else:
result = np.zeros(len(magobs)+3)
result[:] = np.nan
if testvalid:
return np.isfinite(result).all()
return result
def msage(M, FeH, isobundle):
"""
Return the liftime of a star of mass M and metallicity FeH based
on the isochrones in the isobundle.
Returns
Input
-----
M : float
Input mass (solar)
FeH : float
Input metallicity [Fe/H]
isobundle : tuple
Contains everything needed for the isochrones
Returns
-------
finalage : float
log10(lifetime [years]) of the star
"""
(magobs, magerr, maglam, magname, interps, limits, fehs, ages,
maxmasses, wdmagfunc) = isobundle
minfeh, maxfeh, minage, maxage = limits
if FeH >= minfeh and FeH <= maxfeh:
# which two isochrones is this star between
fehinds = np.digitize([FeH], fehs)
fehinds = np.concatenate((fehinds-1, fehinds))
twoages = np.zeros(len(fehinds))
# for each bounding metallicity
for ii in np.arange(len(fehinds)):
# the ages where the max mass is still bigger
# than the current guess
srch = np.where(maxmasses[fehinds[ii], :] >= M)[0]
# very short MS lifetime, not even on the isochrones
if len(srch) == 0:
twoages[ii] = minage
# hasn't evolved yet!
elif srch[-1] == len(ages) - 1:
twoages[ii] = maxage
else:
srch = srch[-1]
# mass in the grid that died at the previous age and this age
bounds = maxmasses[fehinds[ii], srch:srch+2]
# do a linear interpolation to get the age this mass
# would have died
diff = bounds[0] - bounds[1]
twoages[ii] = ((bounds[0] - M)/diff * ages[srch+1] +
(M - bounds[1])/diff * ages[srch])
# do a linear interpolation between bounding metallicities to figure
# out the age a star of this mass and metallicity would die
diff = fehs[fehinds[1]] - fehs[fehinds[0]]
finalage = ((fehs[fehinds[1]] - FeH)/diff * twoages[0] +
(FeH - fehs[fehinds[0]])/diff * twoages[1])
return finalage
# the star isn't within the range of the isochrones
return 0.
def kepler_problem(M, e):
"""
Simple Kepler solver.
Iterative solution via Newton's method. Could likely be sped up,
but this works for now; it's not the major roadblock in the code.
Input
-----
M : ndarray
e : float or ndarray of same size as M
Returns
-------
E : ndarray
"""
import numpy as np
# start with this guess
M = np.array(M)
E = M * 1.
err = M * 0. + 1.
while err.max() > 1e-8:
# solve via Newton's method
guess = E - (E - e * np.sin(E) - M) / (1. - e * np.cos(E))
err = np.abs(guess - E)
E = guess
return E
def light_curve_model(t, p, isobundle, npert=1):
"""
Given the orbital parameters in p, compute a model light curve at times
t, sampling at the rate of npert.
Input
-----
t : ndarray
Times to return the model light curve.
p : ndarray
Orbital parameters. Currently must contain:
period, time of center of transit, ecos(omega), esin(omega),
impact parameter, initial mass of star 2, current mass of star 2,
mass of star 1, metallicity of star 1, log age of the system,
distance, systematic magnitude errors, dust scale height,
and the total extinction A_lambda.
Can also add optional 2 parameters for quadratic limb
darkening of star 1.
isobundle : tuple
(magobs, magerr, maglam, magname, interps, limits, fehs, ages,
maxmasses, wdmagfunc)
Contains everything needed for the isochrones
npert : int, optional
Sampling rate per cadence. Final light curve will average each
cadence over this many samples.
Returns
-------
fluxes : ndarray
Light curve corresponding to the times in t.
"""
# fix limb darkening
if len(p) == 14:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult) = p
u20 = 0.
u21 = 0.
# fit limb darkening for primary star
if len(p) == 16:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult, u10, u11) = p
u20 = 0.
u21 = 0.
# unpack the isochrone info
(magobs, magerr, maglam, magname, interps, limits, fehs, ages,
maxmasses, wdmagfunc) = isobundle
# to get in log(age) like the interpolations need
age = np.log10(age * 1e9)
# get the white dwarf age and Kp magnitude
wdage = np.log10(10.**age - 10.**(msage(M2init, FeH, isobundle)))
wdmag = wdmagfunc(np.array([[M2, wdage]]))[0]
# get the estimated parameters of the primary star
mags = isointerp(M1, FeH, age, isobundle)
R1 = mags[-3]
logg = mags[-2]
Teff = 10.**mags[-1]
if len(p) == 14:
# get the limb darkening from the fit to Sing
u10 = (0.44657704 - 0.00019632296 * (Teff-5500.) +
0.0069222222 * (logg-4.5) + 0.086473504 * FeH)
u11 = (0.22779778 - 0.00012819556 * (Teff-5500.) -
0.0045844444 * (logg-4.5) - 0.050554701 * FeH)
u1 = np.array([u10, u11])
u2 = np.array([u20, u21])
# get the flux ratio between the two stars in the Kepler band
F2F1 = 0.
if np.isfinite(wdmag):
# get the Kp magnitude of the main star
gind = np.where(magname == 'g')[0][0]
rind = np.where(magname == 'r')[0][0]
iind = np.where(magname == 'i')[0][0]
if mags[gind] - mags[rind] <= 0.3:
kpmag1 = 0.25 * mags[gind] + 0.75 * mags[rind]
else:
kpmag1 = 0.3 * mags[gind] + 0.7 * mags[iind]
# convert from magnitudes to flux ratio
F2F1 = 10.**((wdmag - kpmag1)/(-2.5))
if not np.isfinite(F2F1):
F2F1 = 0.
# reconvert into more useful orbital elements
e = np.sqrt(ecosw**2. + esinw**2.)
omega = np.arctan2(esinw, ecosw)
a = ((period * 86400.)**2. * 6.67e-11 * (M1 + M2) * 1.988e30 /
(4.*np.pi**2.))**(1./3) # in m
a = a / (6.955e8 * R1) # in radii of the first star
inc = np.arccos(b/a)
# Compute the size of the WD using the Nauenberg relation:
MCh = 1.454
# in Solar radii
R2 = .0108*np.sqrt((MCh/M2)**(2./3.)-(M2/MCh)**(2./3.))
rrat = R2 / R1
# mean motion
n = 2. * np.pi / period
# cadence for this data set
medt = np.median(np.diff(t))
# generate npert subcadences, equally spaced
tmfine = np.linspace(-medt/2., +medt/2., npert+1)
tmfine = tmfine[:-1] + (tmfine[1] - tmfine[0])/2.
# all times to evaluate fluxes at
# has shape (t, npert)
newt = t[:, np.newaxis] + tmfine
# has to be a vector for Mandel-Agol function
tt = newt.reshape((-1,))
# Sudarsky 2005 Eq. 9 to convert between center of transit
# and pericenter passage (tau)
edif = 1.-e**2.
fcen = np.pi/2. - omega
tau = (ttran + np.sqrt(edif)*period / (2.*np.pi) *
(e*np.sin(fcen)/(1.+e*np.cos(fcen)) - 2./np.sqrt(edif) *
np.arctan(np.sqrt(edif)*np.tan(fcen/2.)/(1.+e))))
# define the mean anomaly
M = (n * (tt - tau)) % (2. * np.pi)
E = kepler_problem(M, e)
# solve for f
tanf2 = np.sqrt((1.+e)/(1.-e)) * np.tan(E/2.)
fanom = (np.arctan(tanf2)*2.) % (2. * np.pi)
r = a * (1. - e**2.) / (1. + e * np.cos(fanom))
# projected distance between the stars (in the same units as a)
projdist = r * np.sqrt(1. - np.sin(omega + fanom)**2. * np.sin(inc)**2.)
# positive z means body 2 is in front (transit)
Z = r * np.sin(omega + fanom) * np.sin(inc)
# get the lens depth given this separation at transit
# 1.6984903e-5 gives 2*Einstein radius^2/R1^2 = 8GMZ/(c^2 R^2)
# with M, Z, R all scaled to solar values
lensdep = 1.6984903e-5 * M2 * np.abs(Z) / R1 - rrat**2.
# then get it into the form I use
lensdep = (lensdep / rrat**2.) + 1.
# fluxes of each body, adjusted by their relative fluxes
F1t = tt * 0. + 1.
F2t = tt * 0. + F2F1
# object 2 passes in front of object 1
transits = np.where((projdist < 1. + rrat) & (Z > 0.))[0]
if len(transits) > 0:
# limb darkened light curves for object 1
ldark = mandel_agol(projdist[transits], u1[0], u1[1], rrat)
# object 1 also has microlensing effects
F1t[transits] *= (ldark + (1. - ldark)*lensdep[transits])
# object 1 passes in front of object 2
occults = np.where((projdist < 1. + rrat) & (Z < 0.))[0]
if len(occults) > 0:
# must be in units of the blocked star/object radius
# for Mandel/Agol function, so divide by the radius ratio
ldark = mandel_agol(projdist[occults]/rrat, u2[0], u2[1], 1./rrat)
F2t[occults] *= ldark
# get back to the proper shape
F1t = F1t.reshape(newt.shape)
F2t = F2t.reshape(newt.shape)
# get the average value for each cadence
F1t = F1t.mean(axis=1)
F2t = F2t.mean(axis=1)
# return a normalized light curve
normed = (F1t + F2t)/(1. + F2F1)
return normed
def logprior(p, isobundle):
"""
Priors on the input parameters.
Input
-----
p : ndarray
Orbital parameters. See light_curve_model for the order.
isobundle : tuple
Contains everything needed for the isochrones
Returns
-------
prior : float
Log likelihood of this set of input parameters based on the
priors.
"""
# fix limb darkening
if len(p) == 14:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult) = p
u20 = 0.
u21 = 0.
# for the sake of the limits below just make up a valid number
# for these
u10 = 0.1
u11 = 0.1
# fit limb darkening for primary star
if len(p) == 16:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult, u10, u11) = p
u20 = 0.
u21 = 0.
# to get in log(age) like the interpolation needs
age = np.log10(age * 1e9)
# check to make sure that it's valid within the models.
if not isointerp(M1, FeH, age, isobundle, testvalid=True):
return -np.inf
# reconvert into more useful orbital elements
e = np.sqrt(ecosw**2. + esinw**2.)
a = ((period * 86400.)**2. * 6.67e-11 * (M1 + M2) * 1.988e30 /
(4.*np.pi**2.))**(1./3) # in m
# if any of the parameters are unphysical, return negative infinity
# log likelihood (impossible)
if (period < 0. or e < 0. or e >= 1. or a < 0. or u10 + u11 >= 1 or
u20 + u21 >= 1 or M2 < 0. or M2init < 0. or height < 0. or
M1 < 0. or dist < 0. or syserr < 0.):
return -np.inf
# otherwise return a uniform prior (except modify the eccentricity to
# ensure the prior is uniform in e)
return 0. - np.log(e)
def loglikeli(p, t, f, ferr, cuts, crowding, isobundle, minimize=False,
retmodel=False, retpoly=False, indchi=False, **kwargs):
"""
Compute the log likelihood of a microlensing signal with these orbital
parameters given the data. By default returns this value, but can
optionally return the full model light curve or just the polynomial
portion of the light curve instead.
Input
-----
p : ndarray
Orbital parameters. See light_curve_model for the order.
t, f, ferr : ndarray
times, fluxes, and flux errors of the data.
cuts : ndarray
Same length as t. Says which group each cadence belongs to,
starting with 0. E.g. all cadences with cuts == 0 will be
assumed to be one event. Each event must be equal length.
isobundle : tuple
Contains everything needed for the isochrones
crowding : ndarray
Must be an array of len(cuts)-1
indicating what fraction of the light is due to the binary system.
1 - crowding is the contamination from outside sources.
If purely light from the system in question, should be just
np.ones(len(cuts)-1)
minimize : boolean, optional
If True, we are trying to minimize the chi-square rather than
maximize the likelihood. Default False.
retmodel : boolean, optional
If True, return the model fluxes instead of the log likelihood.
Default False.
retpoly : boolean, optional
If True, return the polynomial portion of the model fluxes
instead of the log likelihood. Default False.
indchi : boolean, optional
If True, return the chi-square of each individual event.
Default False.
Returns
------
likeli : float
Log likelihood that the model fits the data.
"""
# don't modify the originals
tt = t * 1.
ff = f * 1.
fferr = ferr * 1.
# compute the model light curve
model = light_curve_model(t, p, isobundle, **kwargs)
ncuts = cuts[-1] + 1
# add in the contamination from outside light sources
if crowding is not None:
model = model * crowding[cuts] + 1. - crowding[cuts]
# now has shape (ncuts, tper)
tt = tt.reshape((ncuts, -1))
ff = ff.reshape((ncuts, -1))
fferr = fferr.reshape((ncuts, -1))
model = model.reshape((ncuts, -1))
# center each event on the median time
tmeds = np.median(tt, axis=1)
tt -= tmeds[:, np.newaxis]
# marginalize over the polynomial detrending
# these are just all orders we want to compute
pord = 2
pords = np.arange(pord+1)
# 1-d and 4-d blank arrays to allow for numpy array broadcasting
# in a bit
ones = np.ones((pord+1))
ones4d = np.ones((ncuts, 1, pord+1, pord+1))
# every time to every polynomial order power
# has shape (ncuts, pert, pords)
tpow = tt[:, :, np.newaxis] ** pords
# this is the same for every polynomial order.
# has shape (ncuts, pert, pords)
prefix = ((ff/model) / (fferr/model)**2.)[:, :, np.newaxis] * ones
# get the data side of the equation. Just has shape (ncuts, pords)
# because we summed over (pert)
Bmat = np.sum(prefix * tpow, axis=(1,))
# get the time**pords for both the j and k indices
# has shape (ncuts, pert, 1, pords)
j = tt[:, :, np.newaxis, np.newaxis]**pords[np.newaxis, np.newaxis,
np.newaxis, :]
# has shape (ncuts, pert, pords, 1)
k = tt[:, :, np.newaxis, np.newaxis]**pords[np.newaxis, np.newaxis,
:, np.newaxis]
# has shape (ncuts, pert, pords, pords)
Mbig = j*k
# this gets divided in. should be the same for each pord,
# but needs to be the right shape
# has shape (ncuts, pert, pords, pords)
divider = ((fferr/model)**2.)[:, :, np.newaxis, np.newaxis] * ones4d
Mbig = Mbig / divider
# sum over all times so now
# has shape (ncuts,pords,pords)
Mfinal = np.sum(Mbig, axis=1)
solution = np.array([np.linalg.lstsq(Mfinal[ii, :, :], Bmat[ii, :])[0]
for ii in np.arange(ncuts)]).swapaxes(0, 1)
solution = solution[:, cuts]
# get the optimal polynomial model for each segment of data
polymodel = poly.polyval(tt.reshape((-1,)), solution, tensor=False)
# if there are entire events that aren't seen, they will
# produce polymodel == 0, which can later give divide by 0 errors.
polymodel[polymodel == 0.] = 1.
# compute the chi-square of each segment
totchisq = np.sum(((ff-model*polymodel.reshape((ncuts, -1)))/fferr)**2.,
axis=1)
# return now if desired
if retmodel:
return model.reshape((-1,)) * polymodel
if retpoly:
return polymodel
if indchi:
return totchisq
# start with the light curve chi-square before adding the other
# photometric constraints
totchisq = np.sum(totchisq)
# fix limb darkening
if len(p) == 14:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult) = p
# fit limb darkening for primary star
if len(p) == 16:
(period, ttran, ecosw, esinw, b, M2init, M2, M1, FeH, age, dist,
syserr, height, alammult, u10, u11) = p
# to get in log(age) like the interpolation needs
age = np.log10(age * 1e9)
# calculate the chi-square from the magnitudes
(magobs, magerr, maglam, magname, interps, limits, fehs, ages,
maxmasses, wdmagfunc) = isobundle
mags = isointerp(M1, FeH, age, isobundle)
# take off the radius, logg, teff measurements
mags = mags[:-3]
# convert from absolute to apparent magnitude given the extinction
# parameters and the galatic latitude of KOI-3278
magmodel = (5. * np.log10(dist / 10.) + alammult * maglam *
(1. - np.exp(-dist * np.sin(10.2869 * np.pi / 180.) /
height)) + mags)
# regular chi-square plus a penalty for large systematic error
totchisq += (np.sum((magmodel - magobs)**2. / (magerr**2. + syserr**2.)) +
np.sum(np.log(magerr**2. + syserr**2.)))
# 10% error on Kalirai predicted/final mass relationship for WDs
predM2 = 0.109 * M2init + 0.394
totchisq += (M2 - predM2)**2./(0.1 * predM2)**2.
# 15pc uncertainty in dust scale height (Jones, West, & Foster 2011)
totchisq += (height - 119.)**2. / (15**2.)
# 3.5% uncertainty in A_lambda max
# From IRSA uncertainty on E(B-V)=0.0946+-0.0033
totchisq += (alammult - 1.)**2. / (0.035**2.)
# Add constraint that G dwarf age should be greater than or equal to
# spin-down age of 0.89+-0.15 Gyr:
age = (10.**age) / 1e9
if age < 0.89:
totchisq += (age - 0.89)**2. / (0.15**2.)
# if we're minimizing chi-square instead of maximizing likelihood
if minimize:
return totchisq
# log likelihood is just -chisq/2
return -totchisq/2.
def logprob(p, t, f, ferr, cuts, crowding, npert, isobundle, minimize=False):
"""
Get the log probability of the data given the priors and the model.
See loglikeli for the input parameters.
Also requires npert (the number of subsamples to divide a cadence into).
Returns
-------
prob : float
Log likelihood of the model given the data and priors, up to a
constant.
"""
lp = logprior(p, isobundle)
if not np.isfinite(lp):
# minimization routines don't handle infinities very well, so
# just penalize impossible parameter space
if minimize:
return 1e6
return -np.inf
if minimize:
return -lp + loglikeli(p, t, f, ferr, cuts, crowding, isobundle,
minimize=minimize, npert=npert)
return lp + loglikeli(p, t, f, ferr, cuts, crowding, isobundle,
minimize=minimize, npert=npert)