-
Notifications
You must be signed in to change notification settings - Fork 26
/
components.py
951 lines (726 loc) · 32.6 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.distributions import multinomial, categorical
import torch.optim as optim
import math
try:
from . import helpers as h
from . import ai
from . import scheduling as S
except:
import helpers as h
import ai
import scheduling as S
import math
import abc
from torch.nn.modules.conv import _ConvNd
from enum import Enum
class InferModule(nn.Module):
def __init__(self, *args, normal = False, ibp_init = False, **kwargs):
self.args = args
self.kwargs = kwargs
self.infered = False
self.normal = normal
self.ibp_init = ibp_init
def infer(self, in_shape, global_args = None):
""" this is really actually stateful. """
if self.infered:
return self
self.infered = True
super(InferModule, self).__init__()
self.inShape = list(in_shape)
self.outShape = list(self.init(list(in_shape), *self.args, global_args = global_args, **self.kwargs))
if self.outShape is None:
raise "init should set the out_shape"
self.reset_parameters()
return self
def reset_parameters(self):
if not hasattr(self,'weight') or self.weight is None:
return
n = h.product(self.weight.size()) / self.outShape[0]
stdv = 1 / math.sqrt(n)
if self.ibp_init:
torch.nn.init.orthogonal_(self.weight.data)
elif self.normal:
self.weight.data.normal_(0, stdv)
self.weight.data.clamp_(-1, 1)
else:
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
if self.ibp_init:
self.bias.data.zero_()
elif self.normal:
self.bias.data.normal_(0, stdv)
self.bias.data.clamp_(-1, 1)
else:
self.bias.data.uniform_(-stdv, stdv)
def clip_norm(self):
if not hasattr(self, "weight"):
return
if not hasattr(self,"weight_g"):
if torch.__version__[0] == "0":
nn.utils.weight_norm(self, dim=None)
else:
nn.utils.weight_norm(self)
self.weight_g.data.clamp_(-h.max_c_for_norm, h.max_c_for_norm)
if torch.__version__[0] != "0":
self.weight_v.data.clamp_(-h.max_c_for_norm * 10000,h.max_c_for_norm * 10000)
if hasattr(self, "bias"):
self.bias.data.clamp_(-h.max_c_for_norm * 10000, h.max_c_for_norm * 10000)
def regularize(self, p):
reg = 0
if torch.__version__[0] == "0":
for param in self.parameters():
reg += param.norm(p)
else:
if hasattr(self, "weight_g"):
reg += self.weight_g.norm().sum()
reg += self.weight_v.norm().sum()
elif hasattr(self, "weight"):
reg += self.weight.norm().sum()
if hasattr(self, "bias"):
reg += self.bias.view(-1).norm(p=p).sum()
return reg
def remove_norm(self):
if hasattr(self,"weight_g"):
torch.nn.utils.remove_weight_norm(self)
def showNet(self, t = ""):
print(t + self.__class__.__name__)
def printNet(self, f):
print(self.__class__.__name__, file=f)
@abc.abstractmethod
def forward(self, *args, **kargs):
pass
def __call__(self, *args, onyx=False, **kargs):
if onyx:
return self.forward(*args, onyx=onyx, **kargs)
else:
return super(InferModule, self).__call__(*args, **kargs)
@abc.abstractmethod
def neuronCount(self):
pass
def depth(self):
return 0
def getShapeConv(in_shape, conv_shape, stride = 1, padding = 0):
inChan, inH, inW = in_shape
outChan, kH, kW = conv_shape[:3]
outH = 1 + int((2 * padding + inH - kH) / stride)
outW = 1 + int((2 * padding + inW - kW) / stride)
return (outChan, outH, outW)
def getShapeConvTranspose(in_shape, conv_shape, stride = 1, padding = 0, out_padding=0):
inChan, inH, inW = in_shape
outChan, kH, kW = conv_shape[:3]
outH = (inH - 1 ) * stride - 2 * padding + kH + out_padding
outW = (inW - 1 ) * stride - 2 * padding + kW + out_padding
return (outChan, outH, outW)
class Linear(InferModule):
def init(self, in_shape, out_shape, **kargs):
self.in_neurons = h.product(in_shape)
if isinstance(out_shape, int):
out_shape = [out_shape]
self.out_neurons = h.product(out_shape)
self.weight = torch.nn.Parameter(torch.Tensor(self.in_neurons, self.out_neurons))
self.bias = torch.nn.Parameter(torch.Tensor(self.out_neurons))
return out_shape
def forward(self, x, **kargs):
s = x.size()
x = x.view(s[0], h.product(s[1:]))
return (x.matmul(self.weight) + self.bias).view(s[0], *self.outShape)
def neuronCount(self):
return 0
def showNet(self, t = ""):
print(t + "Linear out=" + str(self.out_neurons))
def printNet(self, f):
print("Linear(" + str(self.out_neurons) + ")" )
print(h.printListsNumpy(list(self.weight.transpose(1,0).data)), file= f)
print(h.printNumpy(self.bias), file= f)
class Activation(InferModule):
def init(self, in_shape, global_args = None, activation = "ReLU", **kargs):
self.activation = [ "ReLU","Sigmoid", "Tanh", "Softplus", "ELU", "SELU"].index(activation)
self.activation_name = activation
return in_shape
def regularize(self, p):
return 0
def forward(self, x, **kargs):
return [lambda x:x.relu(), lambda x:x.sigmoid(), lambda x:x.tanh(), lambda x:x.softplus(), lambda x:x.elu(), lambda x:x.selu()][self.activation](x)
def neuronCount(self):
return h.product(self.outShape)
def depth(self):
return 1
def showNet(self, t = ""):
print(t + self.activation_name)
def printNet(self, f):
pass
class ReLU(Activation):
pass
def activation(*args, batch_norm = False, **kargs):
a = Activation(*args, **kargs)
return Seq(BatchNorm(), a) if batch_norm else a
class Identity(InferModule): # for feigning model equivelence when removing an op
def init(self, in_shape, global_args = None, **kargs):
return in_shape
def forward(self, x, **kargs):
return x
def neuronCount(self):
return 0
def printNet(self, f):
pass
def regularize(self, p):
return 0
def showNet(self, *args, **kargs):
pass
class Dropout(InferModule):
def init(self, in_shape, p=0.5, use_2d = False, alpha_dropout = False, **kargs):
self.p = S.Const.initConst(p)
self.use_2d = use_2d
self.alpha_dropout = alpha_dropout
return in_shape
def forward(self, x, time = 0, **kargs):
if self.training:
with torch.no_grad():
p = self.p.getVal(time = time)
mask = (F.dropout2d if self.use_2d else F.dropout)(h.ones(x.size()),p=p, training=True)
if self.alpha_dropout:
with torch.no_grad():
keep_prob = 1 - p
alpha = -1.7580993408473766
a = math.pow(keep_prob + alpha * alpha * keep_prob * (1 - keep_prob), -0.5)
b = -a * alpha * (1 - keep_prob)
mask = mask * a
return x * mask + b
else:
return x * mask
else:
return x
def neuronCount(self):
return 0
def showNet(self, t = ""):
print(t + "Dropout p=" + str(self.p))
def printNet(self, f):
print("Dropout(" + str(self.p) + ")" )
class PrintActivation(Identity):
def init(self, in_shape, global_args = None, activation = "ReLU", **kargs):
self.activation = activation
return in_shape
def printNet(self, f):
print(self.activation, file = f)
class PrintReLU(PrintActivation):
pass
class Conv2D(InferModule):
def init(self, in_shape, out_channels, kernel_size, stride = 1, global_args = None, bias=True, padding = 0, activation = "ReLU", **kargs):
self.prev = in_shape
self.in_channels = in_shape[0]
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.activation = activation
self.use_softplus = h.default(global_args, 'use_softplus', False)
weights_shape = (self.out_channels, self.in_channels, kernel_size, kernel_size)
self.weight = torch.nn.Parameter(torch.Tensor(*weights_shape))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(weights_shape[0]))
else:
self.bias = None # h.zeros(weights_shape[0])
outshape = getShapeConv(in_shape, (out_channels, kernel_size, kernel_size), stride, padding)
return outshape
def forward(self, input, **kargs):
return input.conv2d(self.weight, bias=self.bias, stride=self.stride, padding = self.padding )
def printNet(self, f): # only complete if we've forwardt stride=1
print("Conv2D", file = f)
sz = list(self.prev)
print(self.activation + ", filters={}, kernel_size={}, input_shape={}, stride={}, padding={}".format(self.out_channels, [self.kernel_size, self.kernel_size], list(reversed(sz)), [self.stride, self.stride], self.padding ), file = f)
print(h.printListsNumpy([[list(p) for p in l ] for l in self.weight.permute(2,3,1,0).data]) , file= f)
print(h.printNumpy(self.bias if self.bias is not None else h.dten(self.out_channels)), file= f)
def showNet(self, t = ""):
sz = list(self.prev)
print(t + "Conv2D, filters={}, kernel_size={}, input_shape={}, stride={}, padding={}".format(self.out_channels, [self.kernel_size, self.kernel_size], list(reversed(sz)), [self.stride, self.stride], self.padding ))
def neuronCount(self):
return 0
class ConvTranspose2D(InferModule):
def init(self, in_shape, out_channels, kernel_size, stride = 1, global_args = None, bias=True, padding = 0, out_padding=0, activation = "ReLU", **kargs):
self.prev = in_shape
self.in_channels = in_shape[0]
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.out_padding = out_padding
self.activation = activation
self.use_softplus = h.default(global_args, 'use_softplus', False)
weights_shape = (self.in_channels, self.out_channels, kernel_size, kernel_size)
self.weight = torch.nn.Parameter(torch.Tensor(*weights_shape))
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(weights_shape[0]))
else:
self.bias = None # h.zeros(weights_shape[0])
outshape = getShapeConvTranspose(in_shape, (out_channels, kernel_size, kernel_size), stride, padding, out_padding)
return outshape
def forward(self, input, **kargs):
return input.conv_transpose2d(self.weight, bias=self.bias, stride=self.stride, padding = self.padding, output_padding=self.out_padding)
def printNet(self, f): # only complete if we've forwardt stride=1
print("ConvTranspose2D", file = f)
print(self.activation + ", filters={}, kernel_size={}, input_shape={}".format(self.out_channels, list(self.kernel_size), list(self.prev) ), file = f)
print(h.printListsNumpy([[list(p) for p in l ] for l in self.weight.permute(2,3,1,0).data]) , file= f)
print(h.printNumpy(self.bias), file= f)
def neuronCount(self):
return 0
class MaxPool2D(InferModule):
def init(self, in_shape, kernel_size, stride = None, **kargs):
self.prev = in_shape
self.kernel_size = kernel_size
self.stride = kernel_size if stride is None else stride
return getShapeConv(in_shape, (in_shape[0], kernel_size, kernel_size), stride)
def forward(self, x, **kargs):
return x.max_pool2d(self.kernel_size, self.stride)
def printNet(self, f):
print("MaxPool2D stride={}, kernel_size={}, input_shape={}".format(list(self.stride), list(self.shape[2:]), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class AvgPool2D(InferModule):
def init(self, in_shape, kernel_size, stride = None, **kargs):
self.prev = in_shape
self.kernel_size = kernel_size
self.stride = kernel_size if stride is None else stride
out_size = getShapeConv(in_shape, (in_shape[0], kernel_size, kernel_size), self.stride, padding = 1)
return out_size
def forward(self, x, **kargs):
if h.product(x.size()[2:]) == 1:
return x
return x.avg_pool2d(kernel_size = self.kernel_size, stride = self.stride, padding = 1)
def printNet(self, f):
print("AvgPool2D stride={}, kernel_size={}, input_shape={}".format(list(self.stride), list(self.shape[2:]), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class AdaptiveAvgPool2D(InferModule):
def init(self, in_shape, out_shape, **kargs):
self.prev = in_shape
self.out_shape = list(out_shape)
return [in_shape[0]] + self.out_shape
def forward(self, x, **kargs):
return x.adaptive_avg_pool2d(self.out_shape)
def printNet(self, f):
print("AdaptiveAvgPool2D out_Shape={} input_shape={}".format(list(self.out_shape), list(self.prev[1:]+self.prev[:1]) ), file = f)
def neuronCount(self):
return h.product(self.outShape)
class Normalize(InferModule):
def init(self, in_shape, mean, std, **kargs):
self.mean_v = mean
self.std_v = std
self.mean = h.dten(mean)
self.std = 1 / h.dten(std)
return in_shape
def forward(self, x, **kargs):
mean_ex = self.mean.view(self.mean.shape[0],1,1).expand(*x.size()[1:])
std_ex = self.std.view(self.std.shape[0],1,1).expand(*x.size()[1:])
return (x - mean_ex) * std_ex
def neuronCount(self):
return 0
def printNet(self, f):
print("Normalize mean={} std={}".format(self.mean_v, self.std_v), file = f)
def showNet(self, t = ""):
print(t + "Normalize mean={} std={}".format(self.mean_v, self.std_v))
class Flatten(InferModule):
def init(self, in_shape, **kargs):
return h.product(in_shape)
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], h.product(s[1:]))
def neuronCount(self):
return 0
class BatchNorm(InferModule):
def init(self, in_shape, track_running_stats = True, momentum = 0.1, eps=1e-5, **kargs):
self.gamma = torch.nn.Parameter(torch.Tensor(*in_shape))
self.beta = torch.nn.Parameter(torch.Tensor(*in_shape))
self.eps = eps
self.track_running_stats = track_running_stats
self.momentum = momentum
self.running_mean = None
self.running_var = None
self.num_batches_tracked = 0
return in_shape
def reset_parameters(self):
self.gamma.data.fill_(1)
self.beta.data.zero_()
def forward(self, x, **kargs):
exponential_average_factor = 0.0
if self.training and self.track_running_stats:
# TODO: if statement only here to tell the jit to skip emitting this when it is None
if self.num_batches_tracked is not None:
self.num_batches_tracked += 1
if self.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / float(self.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = self.momentum
new_mean = x.vanillaTensorPart().detach().mean(dim=0)
new_var = x.vanillaTensorPart().detach().var(dim=0, unbiased=False)
if torch.isnan(new_var * 0).any():
return x
if self.training:
self.running_mean = (1 - exponential_average_factor) * self.running_mean + exponential_average_factor * new_mean if self.running_mean is not None else new_mean
if self.running_var is None:
self.running_var = new_var
else:
q = (1 - exponential_average_factor) * self.running_var
r = exponential_average_factor * new_var
self.running_var = q + r
if self.track_running_stats and self.running_mean is not None and self.running_var is not None:
new_mean = self.running_mean
new_var = self.running_var
diver = 1 / (new_var + self.eps).sqrt()
if torch.isnan(diver).any():
print("Really shouldn't happen ever")
return x
else:
out = (x - new_mean) * diver * self.gamma + self.beta
return out
def neuronCount(self):
return 0
class Unflatten2d(InferModule):
def init(self, in_shape, w, **kargs):
self.w = w
self.outChan = int(h.product(in_shape) / (w * w))
return (self.outChan, self.w, self.w)
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], self.outChan, self.w, self.w)
def neuronCount(self):
return 0
class View(InferModule):
def init(self, in_shape, out_shape, **kargs):
assert(h.product(in_shape) == h.product(out_shape))
return out_shape
def forward(self, x, **kargs):
s = x.size()
return x.view(s[0], *self.outShape)
def neuronCount(self):
return 0
class Seq(InferModule):
def init(self, in_shape, *layers, **kargs):
self.layers = layers
self.net = nn.Sequential(*layers)
self.prev = in_shape
for s in layers:
in_shape = s.infer(in_shape, **kargs).outShape
return in_shape
def forward(self, x, **kargs):
for l in self.layers:
x = l(x, **kargs)
return x
def clip_norm(self):
for l in self.layers:
l.clip_norm()
def regularize(self, p):
return sum(n.regularize(p) for n in self.layers)
def remove_norm(self):
for l in self.layers:
l.remove_norm()
def printNet(self, f):
for l in self.layers:
l.printNet(f)
def showNet(self, *args, **kargs):
for l in self.layers:
l.showNet(*args, **kargs)
def neuronCount(self):
return sum([l.neuronCount() for l in self.layers ])
def depth(self):
return sum([l.depth() for l in self.layers ])
def FFNN(layers, last_lin = False, last_zono = False, **kargs):
starts = layers
ends = []
if last_lin:
ends = ([CorrelateAll(only_train=False)] if last_zono else []) + [PrintActivation(activation = "Affine"), Linear(layers[-1],**kargs)]
starts = layers[:-1]
return Seq(*([ Seq(PrintActivation(**kargs), Linear(s, **kargs), activation(**kargs)) for s in starts] + ends))
def Conv(*args, **kargs):
return Seq(Conv2D(*args, **kargs), activation(**kargs))
def ConvTranspose(*args, **kargs):
return Seq(ConvTranspose2D(*args, **kargs), activation(**kargs))
MP = MaxPool2D
def LeNet(conv_layers, ly = [], bias = True, normal=False, **kargs):
def transfer(tp):
if isinstance(tp, InferModule):
return tp
if isinstance(tp[0], str):
return MaxPool2D(*tp[1:])
return Conv(out_channels = tp[0], kernel_size = tp[1], stride = tp[-1] if len(tp) == 4 else 1, bias=bias, normal=normal, **kargs)
conv = [transfer(s) for s in conv_layers]
return Seq(*conv, FFNN(ly, **kargs, bias=bias)) if len(ly) > 0 else Seq(*conv)
def InvLeNet(ly, w, conv_layers, bias = True, normal=False, **kargs):
def transfer(tp):
return ConvTranspose(out_channels = tp[0], kernel_size = tp[1], stride = tp[2], padding = tp[3], out_padding = tp[4], bias=False, normal=normal)
return Seq(FFNN(ly, bias=bias), Unflatten2d(w), *[transfer(s) for s in conv_layers])
class FromByteImg(InferModule):
def init(self, in_shape, **kargs):
return in_shape
def forward(self, x, **kargs):
return x.to_dtype()/ 256.
def neuronCount(self):
return 0
class Skip(InferModule):
def init(self, in_shape, net1, net2, **kargs):
self.net1 = net1.infer(in_shape, **kargs)
self.net2 = net2.infer(in_shape, **kargs)
assert(net1.outShape[1:] == net2.outShape[1:])
return [ net1.outShape[0] + net2.outShape[0] ] + net1.outShape[1:]
def forward(self, x, **kargs):
r1 = self.net1(x, **kargs)
r2 = self.net2(x, **kargs)
return r1.cat(r2, dim=1)
def regularize(self, p):
return self.net1.regularize(p) + self.net2.regularize(p)
def clip_norm(self):
self.net1.clip_norm()
self.net2.clip_norm()
def remove_norm(self):
self.net1.remove_norm()
self.net2.remove_norm()
def neuronCount(self):
return self.net1.neuronCount() + self.net2.neuronCount()
def printNet(self, f):
print("SkipNet1", file=f)
self.net1.printNet(f)
print("SkipNet2", file=f)
self.net2.printNet(f)
print("SkipCat dim=1", file=f)
def showNet(self, t = ""):
print(t+"SkipNet1")
self.net1.showNet(" "+t)
print(t+"SkipNet2")
self.net2.showNet(" "+t)
print(t+"SkipCat dim=1")
class ParSum(InferModule):
def init(self, in_shape, net1, net2, **kargs):
self.net1 = net1.infer(in_shape, **kargs)
self.net2 = net2.infer(in_shape, **kargs)
assert(net1.outShape == net2.outShape)
return net1.outShape
def forward(self, x, **kargs):
r1 = self.net1(x, **kargs)
r2 = self.net2(x, **kargs)
return x.addPar(r1,r2)
def clip_norm(self):
self.net1.clip_norm()
self.net2.clip_norm()
def remove_norm(self):
self.net1.remove_norm()
self.net2.remove_norm()
def neuronCount(self):
return self.net1.neuronCount() + self.net2.neuronCount()
def depth(self):
return max(self.net1.depth(), self.net2.depth())
def printNet(self, f):
print("ParNet1", file=f)
self.net1.printNet(f)
print("ParNet2", file=f)
self.net2.printNet(f)
print("ParCat dim=1", file=f)
def showNet(self, t = ""):
print(t + "ParNet1")
self.net1.showNet(" "+t)
print(t + "ParNet2")
self.net2.showNet(" "+t)
print(t + "ParSum")
class ToZono(Identity):
def init(self, in_shape, customRelu = None, only_train = False, **kargs):
self.customRelu = customRelu
self.only_train = only_train
return in_shape
def forward(self, x, **kargs):
return self.abstract_forward(x, **kargs) if self.training or not self.only_train else x
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('hybrid_to_zono', customRelu = self.customRelu)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train))
class CorrelateAll(ToZono):
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('hybrid_to_zono',correlate=True, customRelu = self.customRelu)
class ToHZono(ToZono):
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('zono_to_hybrid',customRelu = self.customRelu)
class Concretize(ToZono):
def init(self, in_shape, only_train = True, **kargs):
self.only_train = only_train
return in_shape
def abstract_forward(self, x, **kargs):
return x.abstractApplyLeaf('concretize')
# stochastic correlation
class CorrRand(Concretize):
def init(self, in_shape, num_correlate, only_train = True, **kargs):
self.only_train = only_train
self.num_correlate = num_correlate
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("stochasticCorrelate", self.num_correlate)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " num_correlate="+ str(self.num_correlate))
class CorrMaxK(CorrRand):
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxK", self.num_correlate)
class CorrMaxPool2D(Concretize):
def init(self,in_shape, kernel_size, only_train = True, max_type = ai.MaxTypes.head_beta, **kargs):
self.only_train = only_train
self.kernel_size = kernel_size
self.max_type = max_type
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxPool", kernel_size = self.kernel_size, stride = self.kernel_size, max_type = self.max_type)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " kernel_size="+ str(self.kernel_size) + " max_type=" +str(self.max_type))
class CorrMaxPool3D(Concretize):
def init(self,in_shape, kernel_size, only_train = True, max_type = ai.MaxTypes.only_beta, **kargs):
self.only_train = only_train
self.kernel_size = kernel_size
self.max_type = max_type
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("correlateMaxPool", kernel_size = self.kernel_size, stride = self.kernel_size, max_type = self.max_type, max_pool = F.max_pool3d)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " kernel_size="+ str(self.kernel_size) + " max_type=" +self.max_type)
class CorrFix(Concretize):
def init(self,in_shape, k, only_train = True, **kargs):
self.k = k
self.only_train = only_train
return in_shape
def abstract_forward(self, x):
sz = x.size()
"""
# for more control in the future
indxs_1 = torch.arange(start = 0, end = sz[1], step = math.ceil(sz[1] / self.dims[1]) )
indxs_2 = torch.arange(start = 0, end = sz[2], step = math.ceil(sz[2] / self.dims[2]) )
indxs_3 = torch.arange(start = 0, end = sz[3], step = math.ceil(sz[3] / self.dims[3]) )
indxs = torch.stack(torch.meshgrid((indxs_1,indxs_2,indxs_3)), dim=3).view(-1,3)
"""
szm = h.product(sz[1:])
indxs = torch.arange(start = 0, end = szm, step = math.ceil(szm / self.k))
indxs = indxs.unsqueeze(0).expand(sz[0], indxs.size()[0])
return x.abstractApplyLeaf("correlate", indxs)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " k="+ str(self.k))
class DecorrRand(Concretize):
def init(self, in_shape, num_decorrelate, only_train = True, **kargs):
self.only_train = only_train
self.num_decorrelate = num_decorrelate
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("stochasticDecorrelate", self.num_decorrelate)
class DecorrMin(Concretize):
def init(self, in_shape, num_decorrelate, only_train = True, num_to_keep = False, **kargs):
self.only_train = only_train
self.num_decorrelate = num_decorrelate
self.num_to_keep = num_to_keep
return in_shape
def abstract_forward(self, x):
return x.abstractApplyLeaf("decorrelateMin", self.num_decorrelate, num_to_keep = self.num_to_keep)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " k="+ str(self.num_decorrelate) + " num_to_keep=" + str(self.num_to_keep) )
class DeepLoss(ToZono):
def init(self, in_shape, bw = 0.01, act = F.relu, **kargs): # weight must be between 0 and 1
self.only_train = True
self.bw = S.Const.initConst(bw)
self.act = act
return in_shape
def abstract_forward(self, x, **kargs):
if x.isPoint():
return x
return ai.TaggedDomain(x, self.MLoss(self, x))
class MLoss():
def __init__(self, obj, x):
self.obj = obj
self.x = x
def loss(self, a, *args, lr = 1, time = 0, **kargs):
bw = self.obj.bw.getVal(time = time)
pre_loss = a.loss(*args, time = time, **kargs, lr = lr * (1 - bw))
if bw <= 0.0:
return pre_loss
return (1 - bw) * pre_loss + bw * self.x.deep_loss(act = self.obj.act)
def showNet(self, t = ""):
print(t + self.__class__.__name__ + " only_train=" + str(self.only_train) + " bw="+ str(self.bw) + " act=" + str(self.act) )
class IdentLoss(DeepLoss):
def abstract_forward(self, x, **kargs):
return x
def SkipNet(net1, net2, ffnn, **kargs):
return Seq(Skip(net1,net2), FFNN(ffnn, **kargs))
def WideBlock(out_filters, downsample=False, k=3, bias=False, **kargs):
if not downsample:
k_first = 3
skip_stride = 1
k_skip = 1
else:
k_first = 4
skip_stride = 2
k_skip = 2
# conv2d280(input)
blockA = Conv2D(out_filters, kernel_size=k_skip, stride=skip_stride, padding=0, bias=bias, normal=True, **kargs)
# conv2d282(relu(conv2d278(input)))
blockB = Seq( Conv(out_filters, kernel_size = k_first, stride = skip_stride, padding = 1, bias=bias, normal=True, **kargs)
, Conv2D(out_filters, kernel_size = k, stride = 1, padding = 1, bias=bias, normal=True, **kargs))
return Seq(ParSum(blockA, blockB), activation(**kargs))
def BasicBlock(in_planes, planes, stride=1, bias = False, skip_net = False, **kargs):
block = Seq( Conv(planes, kernel_size = 3, stride = stride, padding = 1, bias=bias, normal=True, **kargs)
, Conv2D(planes, kernel_size = 3, stride = 1, padding = 1, bias=bias, normal=True, **kargs))
if stride != 1 or in_planes != planes:
block = ParSum(block, Conv2D(planes, kernel_size=1, stride=stride, bias=bias, normal=True, **kargs))
elif not skip_net:
block = ParSum(block, Identity())
return Seq(block, activation(**kargs))
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
def ResNet(blocksList, extra = [], bias = False, **kargs):
layers = []
in_planes = 64
planes = 64
stride = 0
for num_blocks in blocksList:
if stride < 2:
stride += 1
strides = [stride] + [1]*(num_blocks-1)
for stride in strides:
layers.append(BasicBlock(in_planes, planes, stride, bias = bias, **kargs))
in_planes = planes
planes *= 2
print("RESlayers: ", len(layers))
for e,l in extra:
layers[l] = Seq(layers[l], e)
return Seq(Conv(64, kernel_size=3, stride=1, padding = 1, bias=bias, normal=True, printShape=True),
*layers)
def DenseNet(growthRate, depth, reduction, num_classes, bottleneck = True):
def Bottleneck(growthRate):
interChannels = 4*growthRate
n = Seq( ReLU(),
Conv2D(interChannels, kernel_size=1, bias=True, ibp_init = True),
ReLU(),
Conv2D(growthRate, kernel_size=3, padding=1, bias=True, ibp_init = True)
)
return Skip(Identity(), n)
def SingleLayer(growthRate):
n = Seq( ReLU(),
Conv2D(growthRate, kernel_size=3, padding=1, bias=True, ibp_init = True))
return Skip(Identity(), n)
def Transition(nOutChannels):
return Seq( ReLU(),
Conv2D(nOutChannels, kernel_size = 1, bias = True, ibp_init = True),
AvgPool2D(kernel_size=2))
def make_dense(growthRate, nDenseBlocks, bottleneck):
return Seq(*[Bottleneck(growthRate) if bottleneck else SingleLayer(growthRate) for i in range(nDenseBlocks)])
nDenseBlocks = (depth-4) // 3
if bottleneck:
nDenseBlocks //= 2
nChannels = 2*growthRate
conv1 = Conv2D(nChannels, kernel_size=3, padding=1, bias=True, ibp_init = True)
dense1 = make_dense(growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks * growthRate
nOutChannels = int(math.floor(nChannels*reduction))
trans1 = Transition(nOutChannels)
nChannels = nOutChannels
dense2 = make_dense(growthRate, nDenseBlocks, bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(math.floor(nChannels*reduction))
trans2 = Transition(nOutChannels)
nChannels = nOutChannels
dense3 = make_dense(growthRate, nDenseBlocks, bottleneck)
return Seq(conv1, dense1, trans1, dense2, trans2, dense3,
ReLU(),
AvgPool2D(kernel_size=8),
CorrelateAll(only_train=False, ignore_point = True),
Linear(num_classes, ibp_init = True))