-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_rotation.py
181 lines (145 loc) · 7.6 KB
/
eval_rotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import logging
import os
import sys
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from data_processing import datasets
from pointnet.model import PointNet
from util import rotation
from util.math import set_random_seed
def evaluate_base(model: nn.Module, points: torch.Tensor, label: torch.Tensor) -> Tuple[int, torch.Tensor]:
(predictions, _) = model(points)
max_predictions = predictions.data.max(1)[1]
return max_predictions.eq(label).sum().item(), max_predictions
def evaluate_majority_vote(model: nn.Module, points: torch.Tensor, label: torch.Tensor, rounds: int) -> int:
batch_predictions = []
for j in range(rounds):
theta = (j * np.pi * 2) / rounds
rotated_points = rotation.rotate_z_batch(points, theta)
(predictions, _) = model(rotated_points)
max_predictions = predictions.data.max(1)[1]
batch_predictions.append(max_predictions.cpu().numpy())
batch_predictions = np.transpose(np.array(batch_predictions))
votes = np.zeros((batch_predictions.shape[0], test_data.num_classes))
for k in range(batch_predictions.shape[0]):
for j in range(batch_predictions.shape[1]):
votes[k][batch_predictions[k][j]] += 1
majority = np.argmax(votes, axis=1)
return np.equal(majority, label.cpu().numpy()).sum()
def evaluate_so3(model: nn.Module, points: torch.Tensor, label: torch.Tensor) -> int:
points = rotation.random_rotate_so3_batch(points)
(predictions, _) = model(points)
max_predictions = predictions.data.max(1)[1]
return max_predictions.eq(label).sum().item()
def evaluate_z(model: nn.Module, points: torch.Tensor, label: torch.Tensor) -> int:
points = rotation.random_rotate_z_batch(points)
(predictions, _) = model(points)
max_predictions = predictions.data.max(1)[1]
return max_predictions.eq(label).sum().item()
def evaluate_random_attack_z(model: nn.Module, points: torch.Tensor, label: torch.Tensor, theta: float, iterations: int):
adversarial_samples = torch.zeros_like(label, dtype=torch.long)
for i in range(iterations):
rotated_points = rotation.random_rotate_z_batch(points, -theta, theta)
(predictions, _) = model(rotated_points)
max_predictions = predictions.data.max(1)[1]
adversarial_samples += (max_predictions != label)
return adversarial_samples.size(0) - (adversarial_samples > 0).sum().item()
def evaluate_random_attack_so3(model: nn.Module, points: torch.Tensor, label: torch.Tensor, theta: float, iterations: int):
adversarial_samples = torch.zeros_like(label, dtype=torch.long)
for i in range(iterations):
rotated_points = rotation.random_rotate_so3_batch(points, -theta, theta)
(predictions, _) = model(rotated_points)
max_predictions = predictions.data.max(1)[1]
adversarial_samples += (max_predictions != label)
return adversarial_samples.size(0) - (adversarial_samples > 0).sum().item()
def evaluate_grid_z(model: nn.Module, points: torch.Tensor, label: torch.Tensor, theta: float, iterations: int):
theta_min = -theta
theta_delta = (2 * theta) / iterations
adversarial_samples = torch.zeros_like(label, dtype=torch.long)
for i in range(iterations + 1):
rotated_points = rotation.rotate_z_batch(points, theta_min + i * theta_delta)
(predictions, _) = model(rotated_points)
max_predictions = predictions.data.max(1)[1]
adversarial_samples += (max_predictions != label)
return adversarial_samples.size(0) - (adversarial_samples > 0).sum().item()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True, help='path to the trained model')
parser.add_argument('--dataset', type=str, default='modelnet40', help='the dataset to use', choices=['modelnet40'])
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size')
parser.add_argument('--num_points', type=int, default=1024, help='number of points per point cloud')
parser.add_argument('--num_workers', type=int, default=0, help='number of parallel data loader workers')
parser.add_argument('--eval_rotations', type=int, default=12, help='amount of rotations to evaluate')
parser.add_argument('--theta', type=float, default=1, help='angle to attack')
parser.add_argument('--best_of', type=int, default=10, help='best of k for random attack')
parser.add_argument('--max_features', type=int, default=1024, help='the number of features for max pooling')
parser.add_argument('--pooling', choices=['max', 'avg', 'sum'], default='max', help='global pooling function')
parser.add_argument('--seed', type=int, default=182343073, help='seed for random number generator')
settings = parser.parse_args()
settings.device = 'cuda' if torch.cuda.is_available() else 'cpu'
settings.dataset = os.path.join('data', settings.dataset)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
consoleHandler = logging.StreamHandler(sys.stdout)
consoleHandler.setFormatter(formatter)
logger.addHandler(consoleHandler)
logger.info(settings)
set_random_seed(settings.seed)
test_data = datasets.modelnet40(num_points=settings.num_points, split='test', rotate='none')
test_loader = DataLoader(
dataset=test_data,
batch_size=settings.batch_size,
shuffle=False,
num_workers=settings.num_workers
)
num_batches = len(test_data) / settings.batch_size
logger.info("Number of batches: %d", num_batches)
logger.info("Number of classes: %d", test_data.num_classes)
logger.info("Test set size: %d", len(test_data))
model = PointNet(
number_points=settings.num_points,
num_classes=test_data.num_classes,
max_features=settings.max_features,
pool_function=settings.pooling
)
model.load_state_dict(torch.load(settings.model))
model = model.to(settings.device)
model = model.eval()
logger.info("starting evaluation")
theta = settings.theta / 180.0
num_correct_base = 0
num_correct_vote = 0
num_correct_z = 0
num_correct_so3 = 0
num_correct_rand_z = 0
num_correct_grid_z = 0
num_correct_rand_so3 = 0
num_total = 0
for i, data in enumerate(tqdm(test_loader)):
points, _, label = data
label = torch.squeeze(label)
points = points.to(settings.device)
label = label.to(settings.device)
correct, _ = evaluate_base(model, points, label)
num_correct_base += correct
num_correct_vote += evaluate_majority_vote(model, points, label, settings.eval_rotations)
num_correct_z += evaluate_z(model, points, label)
num_correct_so3 += evaluate_so3(model, points, label)
num_correct_grid_z += evaluate_grid_z(model, points, label, theta, settings.best_of)
num_correct_rand_z += evaluate_random_attack_z(model, points, label, theta, settings.eval_rotations)
num_correct_rand_so3 += evaluate_random_attack_so3(model, points, label, theta, settings.eval_rotations)
num_total += len(label)
logger.info("Test Accuracies:")
logger.info(f"Base: {num_correct_base / num_total}")
logger.info(f"Voted: {num_correct_vote / num_total}")
logger.info(f"Z: {num_correct_z / num_total}")
logger.info(f"SO3: {num_correct_so3 / num_total}")
logger.info(f"AdvRandZ: {num_correct_rand_z / num_total}")
logger.info(f"AdvGridZ: {num_correct_grid_z / num_total}")
logger.info(f"AdvRandSO3: {num_correct_rand_so3 / num_total}")