forked from phasetr/math-textbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
math_textbook_en.tex
17882 lines (16290 loc) · 751 KB
/
math_textbook_en.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[openany, a4paper, oneside]{book}
\usepackage[top=10truemm,bottom=20truemm,left=15truemm,right=15truemm]{geometry}
\usepackage[dvipdfmx]{graphicx, hyperref}
\usepackage{atbegshi}
\ifnum 42146=\euc"A4A2
\AtBeginShipoutFirst{\special{pdf:tounicode EUC-UCS2}}
\else
\AtBeginShipoutFirst{\special{pdf:tounicode 90ms-RKSJ-UCS2}}
\fi
\usepackage[all]{xy}
\usepackage{makeidx}
\makeindex
\usepackage{url}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{mathrsfs}
\usepackage{bm}
\bibliographystyle{jplain}
\addtolength{\footskip}{10mm}
\makeatletter
\def\ps@plainfoot{%
\let\@mkboth\@gobbletwo
\let\@oddhead\@empty
\def\@oddfoot{\normalfont\hfil-- \thepage\ --\hfil}%
\let\@evenhead\@empty
\let\@evenfoot\@oddfoot}
\let\ps@plain\ps@plainfoot
\makeatother
\pagestyle{plain}
\makeatletter
\newcounter{enum2}
\renewenvironment{enumerate}{%
\begin{list}%
{%
\arabic{enum2}.\ \,% 見出し記号/ 直後の空白を調節
}%
{%
\usecounter{enum2}
\setlength{\itemindent}{0pt}% ここは 0 に固定
\setlength{\leftmargin}{15pt}% 左のインデント
\setlength{\rightmargin}{0pt}% 右のインデント
\setlength{\labelsep}{0pt}% 黒丸と説明文の間
\setlength{\labelwidth}{6pt}% ラベルの幅
\setlength{\itemsep}{0pt}% 項目ごとの改行幅
\setlength{\parsep}{0pt}% 段落での改行幅
\setlength{\listparindent}{0pt}% 段落での一字下り
}
}{%
\end{list}%
}
\renewenvironment{itemize}{%
\begin{list}{$\bullet$\ \ }%
{%
\usecounter{enum2}
\setlength{\itemindent}{0pt}% ここは 0 に固定
\setlength{\leftmargin}{15pt}% 左のインデント
\setlength{\rightmargin}{0pt}% 右のインデント
\setlength{\labelsep}{0pt}% 黒丸と説明文の間
\setlength{\labelwidth}{6pt}% ラベルの幅
\setlength{\itemsep}{0pt}% 項目ごとの改行幅
\setlength{\parsep}{0pt}% 段落での改行幅
\setlength{\listparindent}{0pt}% 段落での一字下り
}
}{%
\end{list}%
}
\makeatletter
\renewcommand{\theequation}{\thesection.\arabic{equation}}
\@addtoreset{equation}{section}
\makeatother
\makeatletter
\newcommand*{\defeq}{\mathrel{\rlap{%
\raisebox{0.3ex}{$\m@th\cdot$}}%
\raisebox{-0.3ex}{$\m@th\cdot$}}%
=}
\newcommand*{\eqdef}{=\mathrel{\hbox to 0pt{%
\raisebox{0.3ex}{$\m@th\cdot$}}%
\raisebox{-0.3ex}{$\m@th\cdot$}}%
}
\makeatother
\DeclareMathOperator*{\slim}{s-lim}
\DeclareMathOperator*{\wlim}{w-lim}
\DeclareMathOperator{\diag}{diag}
\newcommand{\card}{\mathrm{card}\,}
\newcommand{\co}{\mathrm{co}\,}
\newcommand{\const}{\mathrm{const.}}
\newcommand{\dom}{\mathrm{dom}\,}
\newcommand{\Rad}{\mathrm{Rad}\,}
\newcommand{\ran}{\mathrm{ran}\,}
\newcommand{\algoplus}{\mathop{\hat{\bigoplus}}}
\newcommand{\algotimes}{\mathop{\hat{\bigotimes}}}
\newcommand{\esssup}{\mathop{\mathrm{ess.sup}}}
\DeclareMathOperator{\grad}{grad \,}
\DeclareMathOperator{\rot}{rot \,}
\DeclareMathOperator{\divergence}{div \,}
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\newtheoremstyle{breakdefn}
{\topsep}{\topsep}%
{\normalfont}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
\renewcommand{\proofname}{\upbf{Proof}}
\theoremstyle{breakdefn}
\newtheorem{thm}{Theorem.}[section]
\newtheorem{cor}[thm]{Corollary.}
\newtheorem{lem}[thm]{Lemma.}
\newtheorem{pos}[thm]{Postulate.}
\newtheorem{req}[thm]{Request.}
\newtheorem{prop}[thm]{Proposition.}
\newtheorem{axm}[thm]{Axiom.}
\newtheorem{defn}[thm]{Definition.}
\newtheorem{ex}[thm]{Example.}
\newtheorem{exercise}[thm]{Exercise.}
\newtheorem{problem}[thm]{Problem.}
\newtheorem{rem}[thm]{Remark.}
\newtheorem{fact}[thm]{Fact.}
\newtheorem{assump}[thm]{Assumption.}
\renewcommand{\thethm}{\arabic{chapter}.\arabic{section}.\arabic{thm}}
%For (js)article
%\renewcommand{\thethm}{\arabic{section}.\arabic{subsection}.\arabic{thm}}
\renewcommand{\Im}{\mathrm{Im} \,}
\renewcommand{\Re}{\mathrm{Re} \,}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% brackets and such
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\inftynorm}[1]{\left\Vert#1\right\Vert_{\infty}}
\newcommand{\pnorm}[1]{\left\Vert#1\right\Vert_p}
\newcommand{\qnorm}[1]{\left\Vert#1\right\Vert_q}
\newcommand{\twonorm}[1]{\norm{#1}_2}
\newcommand{\dbk}[1]{\left\langle #1 \right\rangle}
\newcommand{\rbk}[1]{\left (#1\right)}
\newcommand{\sqbk}[1]{\left[#1\right]}
\newcommand{\cbk}[1]{\left\{#1\right\}}
\newcommand{\abk}[1]{\left\langle #1 \right\rangle}
\newcommand{\bkt}[2]{\left\langle#1,\,#2\right\rangle}
\newcommand{\rbkt}[2]{\left ( #1,\,#2 \right)}
\newcommand{\relmiddle}[1]{\mathrel{}\middle#1\mathrel{}}
\newcommand{\set}[2]{\left\{#1 \relmiddle| #2\right\}}
\newcommand{\bra}[1]{\left\langle #1 \right|}
\newcommand{\ket}[1]{\left| #1 \right\rangle}
\newcommand{\trans}{\,^t\!}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% special sums and such
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\sumtwo}[2]{\mathop{\sum_{#1}}_{#2}}
\newcommand{\sumthree}[3]{\mathop{\mathop{\sum_{#1}}_{#2}}_{#3}}
\newcommand{\sumfour}[4]{\mathop{\mathop{\mathop{\sum_{#1}}_{#2}}_{#3}}_{#4}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\bbA}{\mathbb{A}}
\newcommand{\bbB}{\mathbb{B}}
\newcommand{\bbC}{\mathbb{C}}
\newcommand{\bbH}{\mathbb{H}}
\newcommand{\bbN}{\mathbb{N}}
\newcommand{\bbQ}{\mathbb{Q}}
\newcommand{\bbR}{\mathbb{R}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bbRbar}{\bar{\mathbb{R}}}
\newcommand{\bbRd}{\mathbb{R}^d}
\newcommand{\bbRthree}{\mathbb{R}^3}
\newcommand{\bbRn}{\mathbb{R}^n}
\newcommand{\bbRnu}{\mathbb{R}^{\nu}}
\newcommand{\bbS}{\mathbb{S}}
\newcommand{\bbZ}{\mathbb{Z}}
\newcommand{\calA}{\mathcal{A}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\calCN}{\mathcal{C}_{N}}
\newcommand{\calCleqN}{\mathcal{C}_{\leq N}}
\newcommand{\calD}{\mathcal{D}}
\newcommand{\calE}{\mathcal{E}}
\newcommand{\calF}{\mathcal{F}}
\newcommand{\calFb}{\mathcal{F}_{\mathrm{b}}}
\newcommand{\calFf}{\mathcal{F}_{\mathrm{f}}}
\newcommand{\calH}{\mathcal{H}}
\newcommand{\calI}{\mathcal{I}}
\newcommand{\calK}{\mathcal{K}}
\newcommand{\calL}{\mathcal{L}}
\newcommand{\calV}{\mathcal{V}}
\newcommand{\calM}{\mathcal{M}}
\newcommand{\calO}{\mathcal{O}}
\newcommand{\calR}{\mathcal{R}}
\newcommand{\calS}{\mathcal{S}}
\newcommand{\Ccinfty}{C_{\mathrm{c}}^{\infty}}
\newcommand{\dmu}{d \mu}
\newcommand{\E}[1]{\rmE\sqbk{#1}}
\newcommand{\End}{\mathrm{End}}
\newcommand{\extbbC}{\overline{\bbC}}
\newcommand{\fraka}{\mathfrak{a}}
\newcommand{\frakb}{\mathfrak{b}}
\newcommand{\frakc}{\mathfrak{c}}
\newcommand{\frakd}{\mathfrak{d}}
\newcommand{\frake}{\mathfrak{e}}
\newcommand{\frakf}{\mathfrak{f}}
\newcommand{\frakg}{\mathfrak{g}}
\newcommand{\frakh}{\mathfrak{h}}
\newcommand{\fraki}{\mathfrak{i}}
\newcommand{\frakj}{\mathfrak{j}}
\newcommand{\frakk}{\mathfrak{k}}
\newcommand{\frakl}{\mathfrak{l}}
\newcommand{\frakm}{\mathfrak{m}}
\newcommand{\frakn}{\mathfrak{n}}
\newcommand{\frako}{\mathfrak{o}}
\newcommand{\frakp}{\mathfrak{p}}
\newcommand{\frakq}{\mathfrak{q}}
\newcommand{\frakr}{\mathfrak{r}}
\newcommand{\fraks}{\mathfrak{s}}
\newcommand{\frakt}{\mathfrak{t}}
\newcommand{\fraku}{\mathfrak{u}}
\newcommand{\frakv}{\mathfrak{v}}
\newcommand{\frakw}{\mathfrak{w}}
\newcommand{\frakx}{\mathfrak{x}}
\newcommand{\fraky}{\mathfrak{y}}
\newcommand{\frakz}{\mathfrak{z}}
\newcommand{\frakA}{\mathfrak{A}}
\newcommand{\frakB}{\mathfrak{B}}
\newcommand{\frakC}{\mathfrak{C}}
\newcommand{\frakD}{\mathfrak{D}}
\newcommand{\frakE}{\mathfrak{E}}
\newcommand{\frakF}{\mathfrak{F}}
\newcommand{\frakG}{\mathfrak{G}}
\newcommand{\frakH}{\mathfrak{H}}
\newcommand{\frakI}{\mathfrak{I}}
\newcommand{\frakJ}{\mathfrak{J}}
\newcommand{\frakK}{\mathfrak{K}}
\newcommand{\frakL}{\mathfrak{L}}
\newcommand{\frakM}{\mathfrak{M}}
\newcommand{\frakN}{\mathfrak{N}}
\newcommand{\frakO}{\mathfrak{O}}
\newcommand{\frakP}{\mathfrak{P}}
\newcommand{\frakQ}{\mathfrak{Q}}
\newcommand{\frakR}{\mathfrak{R}}
\newcommand{\frakS}{\mathfrak{S}}
\newcommand{\frakT}{\mathfrak{T}}
\newcommand{\frakU}{\mathfrak{U}}
\newcommand{\frakV}{\mathfrak{V}}
\newcommand{\frakW}{\mathfrak{W}}
\newcommand{\frakX}{\mathfrak{X}}
\newcommand{\frakY}{\mathfrak{Y}}
\newcommand{\frakZ}{\mathfrak{Z}}
\newcommand{\Hom}{\mathrm{Hom} \,}
\newcommand{\Isom}{\mathrm{Isom} \,}
\newcommand{\hyperbolicsegment}[2]{\left[ #1, \, #2 \right]_{\mathrm{h}}}
\newcommand{\Var}[1]{\mathrm{Var}\sqbk{#1}}
\newcommand{\Cov}[1]{\mathrm{Cov}\sqbk{#1}}
\newcommand{\EleqN}{E_{\leq}(N)}
\newcommand{\gvarepsilonminus}{g_{\varepsilon}^{-}}
\newcommand{\gvarepsilonplus}{g_{\varepsilon}^{+}}
\newcommand{\Image}{\mathrm{Im}\,}
\newcommand{\limjtoinfty}{\lim_{j \to \infty}}
\newcommand{\liminfntoinfty}{\liminf_{n \to \infty}}
\newcommand{\limntoinfty}{\lim_{n \to \infty}}
\newcommand{\limsupntoinfty}{\limsup_{n \to \infty}}
\newcommand{\Loneloc}{L_{\mathrm{loc}}^1}
\newcommand{\LtwoRd}{L^2 \rbk{\bbR^d}}
\newcommand{\LtwoRn}{L^2 \rbk{\bbR^n}}
\newcommand{\realtempereddist}{\mathcal{S}'_{\mathrm{real}}}
\newcommand{\realrapiddecrease}{\mathcal{S}_{\mathrm{real}}}
\newcommand{\res}{\mathrm{Res}\,}
\newcommand{\rhoNinfty}{\rho_{N, \infty}}
\newcommand{\riemannsphere}{\overline{\bbC}}
\newcommand{\rmb}{\mathrm{b}}
\newcommand{\rme}{\mathrm{e}}
\newcommand{\rmE}{\mathrm{E}}
\newcommand{\rmf}{\mathrm{f}}
\newcommand{\rms}{\mathrm{s}}
\newcommand{\rmirr}{\mathrm{irr}}
\newcommand{\rmirs}{\mathrm{irs}}
\newcommand{\rmfin}{\mathrm{fin}}
\newcommand{\rmas}{\mathrm{as}}
\newcommand{\rmfr}{\mathrm{fr}}
\newcommand{\rmmin}{\mathrm{min}}
\newcommand{\rmmax}{\mathrm{max}}
\newcommand{\rmtot}{\mathrm{tot}}
\newcommand{\rmg}{\mathrm{g}}
\newcommand{\rmI}{\mathrm{I}}
\newcommand{\rmIm}{\mathrm{Im}}
\newcommand{\rmRe}{\mathrm{Re}}
\newcommand{\rmp}{\mathrm{p}}
\newcommand{\rmph}{\mathrm{ph}}
\newcommand{\scrF}{\mathscr{F}}
\newcommand{\sto}{\xrightarrow{\text{s}}}
\newcommand{\sumonetoinfty}[1]{\sum_{#1 = 1}^{\infty}}
\newcommand{\sumzerotoinfty}[1]{\sum_{#1 = 0}^{\infty}}
\newcommand{\supp}{\mathrm{supp} \,}
\newcommand{\Trace}{\mathrm{Tr}\,}
\newcommand{\touw}{\stackrel{\mathrm{uw}}{\to}\,}
\newcommand{\upbf}[1]{\textup{\textbf{#1}}}
\newcommand{\VC}{V_{\mathrm{C}}}
\newcommand{\wick}[1]{\colon #1 \colon}
\newcommand{\wto}{\xrightarrow{\text{w}}}
\newcommand{\bs}{\blacksquare}
\newcommand{\vep}{\varepsilon}
\newcommand{\fin}{\hfill $\square$ \par}
\newcommand{\ann}{\mathrm{Ann}\,}
\newcommand{\ass}{\mathrm{Ass}\,}
\newcommand{\blu}{\mathrm{Bl}}
\newcommand{\cech}{\check{\mathrm{H}}}
\newcommand{\coho}{\mathrm{H}}
\newcommand{\divcl}{\mathrm{DivCl}\,}
\newcommand{\divs}{\mathrm{Div}\,}
\newcommand{\edivs}{\mathrm{Div}_+\,}
\newcommand{\Frac}{\mathrm{Frac}\,}
\newcommand{\homo}{\mathrm{Hom}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\injsh}{\mathcal{I}}
\newcommand{\kernel}{\mathrm{Ker}\,}
\newcommand{\map}{\longrightarrow}
\newcommand{\pdivs}{\mathrm{Div}_{\mathrm{princ}}\,}
\newcommand{\picard}{\mathrm{Pic}\,}
\newcommand{\proj}{\mathrm{Proj}\,}
\newcommand{\sh}{\mathcal{F}}
\newcommand{\spec}{\mathrm{Spec}\,}
\newcommand{\stsh}{\mathcal{O}}
\bmdefine{\va}{a}
\bmdefine{\vb}{b}
\bmdefine{\vc}{c}
\bmdefine{\ve}{e}
\bmdefine{\vf}{f}
\bmdefine{\vg}{g}
\bmdefine{\vh}{h}
\bmdefine{\vi}{i}
\bmdefine{\vj}{j}
\bmdefine{\vk}{k}
\bmdefine{\vl}{l}
\bmdefine{\vm}{m}
\bmdefine{\vn}{n}
\bmdefine{\vo}{o}
\bmdefine{\vp}{p}
\bmdefine{\vq}{q}
\bmdefine{\vr}{r}
\bmdefine{\vs}{s}
\bmdefine{\vt}{t}
\bmdefine{\vu}{u}
\bmdefine{\vv}{v}
\bmdefine{\vw}{w}
\bmdefine{\vx}{x}
\bmdefine{\vy}{y}
\bmdefine{\vz}{z}
\bmdefine{\vA}{A}
\bmdefine{\vB}{B}
\bmdefine{\vC}{C}
\bmdefine{\vD}{D}
\bmdefine{\vE}{E}
\bmdefine{\vF}{F}
\bmdefine{\vG}{G}
\bmdefine{\vH}{H}
\bmdefine{\vI}{I}
\bmdefine{\vJ}{J}
\bmdefine{\vK}{K}
\bmdefine{\vL}{L}
\bmdefine{\vM}{M}
\bmdefine{\vN}{N}
\bmdefine{\vO}{O}
\bmdefine{\vP}{P}
\bmdefine{\vQ}{Q}
\bmdefine{\vR}{R}
\bmdefine{\vS}{S}
\bmdefine{\vT}{T}
\bmdefine{\vU}{U}
\bmdefine{\vV}{V}
\bmdefine{\vW}{W}
\bmdefine{\vX}{X}
\bmdefine{\vY}{Y}
\bmdefine{\vZ}{Z}
\newcommand{\an}{(a_n)_{n{\in}{\bN}}}
\newcommand{\bn}{(b_n)_{n{\in}{\bN}}}
\newcommand{\cn}{(c_n)_{n{\in}{\bN}}}
\newcommand{\xn}{(x_n)_{n{\in}{\bN}}}
\newcommand{\xm}{(x_m)_{m{\in}{\bN}}}
\newcommand{\xk}{(x_{n (k)})_{k{\in}{\bN}}}
\newcommand{\yn}{(y_n)_{n{\in}{\bN}}}
\newcommand{\fxn}{(f (x_n))_{n{\in}{\bN}}}
\newcommand{\fn}{(f_n)_{n{\in}{\bN}}}
\newcommand{\sn}{(s_n)_{n{\in}{\bN}}}
\newcommand{\pn}{(p_n)_{n{\in}{\bN}}}
\newcommand{\sgn}{\mathrm{sgn}\,}
\newcommand{\mcr}{\mathcal{R}}
\newcommand{\mcs}{\mathcal{S}}
\newcommand{\mcp}{\mathcal{P}}
\newcommand{\mcm}{\mathcal{M}}
\newcommand{\mcl}{\mathcal{L}}
\newcommand{\mcb}{\mathcal{B}}
\newcommand{\mco}{\mathcal{O}}
\newcommand{\deltat}{\varDelta t}
\newcommand{\mbr}{\mathbb{R}}
\newcommand{\mbn}{\mathbb{N}}
\newcommand{\mbz}{\mathbb{Z}}
\newcommand{\mbq}{\mathbb{Q}}
\newcommand{\mbc}{\mathbb{C}}
\newcommand{\mbfn}{\mathbf{N}}
\newcommand{\mbfz}{\mathbf{Z}}
\newcommand{\mbfq}{\mathbf{Q}}
\newcommand{\mbfr}{\mathbf{R}}
\newcommand{\mbfc}{\mathbf{C}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\lrto}{\Longleftrightarrow}
\newcommand{\slrto}{\Longleftrightarrow}
\newcommand{\srto}{\Rightarrow}
\newcommand{\rto}{\Longrightarrow}
\newcommand{\slto}{\Leftarrow}
\newcommand{\lto}{\Longleftarrow}
\newcommand{\vecr}[3]{\rbk{#1,\quad#2,\quad#3}}
\newcommand{\vecc}[3]{\begin{pmatrix}#1\\#2\\#3\end{pmatrix}}
\newcommand{\del}{\varDelta}
\newcommand{\pd}{\partial}
\providecommand{\alert}[1]{\textbf{#1}}
\title{Math textbook}
\author{Soutenni P (@phasetr)\thanks{[email protected], https://github.com/phasetr/math-textbook, http://phasetr.com}}
\date{2014-07-24}
\begin{document}
\maketitle
\setcounter{tocdepth}{10}
\tableofcontents
\vspace*{1cm}
\part{Aim of this book}
I would like to write this math textbook by \textbf{social coding} Github.
It will be written in English and Japanese.
I will also write numerical computation, animation,
or simulation codes by some computer languages.
At first, the content is mainly from manuscripts
of my seminars for students in department of mathematics or physics.
I start programming.
In programmers' community, OSS softwares or social coding using Github
is very popular.
I want to introduce this to mathematics and physics,
especially writing textbooks!
I want to gather our knowledge.
There are many mathematics books written by physicists or engineers,
and physics books written by engineers or mathematicians.
Each is written in their own interest.
I hear that a mathematician (teacher) said,
``professors of the department of engineering tell me
I hope your lecture and the content will be engineering students friendly.
But I do not understand their interest.
I want to write books I can understand!''
OK, I will do it.
I studied physics in my bachelor days and studied mathematics
in my master days.
So I will be ``human sacrifice'' for this difficult, but very
interesting and exciting project.
There are many many good books,
but they are systematic and ``boring'' sometimes.
I want to fill the gaps:
I want to write applicative contents in physics, engineering or mathematics itself,
and connections among many branches.
\part{Writhing mathematical/physical English}
Japanese only.
\part{Set theory}
\chapter{\textbf{TODO} Introduction to cardinal number}
I will write this content from my movie in nicovideo.
\part{Linear Algebra}
\chapter{Talk: Linear algebra and Calculus: Introduction to university mathematics}
This note is based on a course for newcomers in the spring of 2014 at the Tokyo Institute of Technology.
See also \cite{MasahikoSaitoh1, AsaoArai3, AraiEzawa1, AraiEzawa2, KenjiFukaya2, ToshioNiwa1}.
\section{Introduction}
We talk about linear algebra, especially
it's relation to calculus, i.e., differentiation and integration.
In this talk we speak in Japanese but write in English on blackboard.
It is because I want newcomers to get used to writing and reading in English.
\section{What is linear algebra?}
Main targets of linear algebra are vectors and matrices.
We learn them in high school but linear algebra in
university mathematics has somewhat different flavor from one in high school.
Furthermore linear algebra is difficult to imagine
where we use it compared to calculus.
So we first consider its different points and its usage
in mathematics and physics.
In high school we consider vectors as geometric objects.
However we now consider them as algebraic objects,
since they are ones in linear ``algebra''!
Our vectors are a generalized/abstract version of ones in high school.
A vector needs not have direction nor length.
Then, what properties should vectors have?
\subsection{Abstract definition of vectors}
In the following we sometimes use the terms linear spaces or vector spaces.
These words have the same meaning.
In the below definition a set of scalers is the set of real numbers $\bbR$ for simplicity\footnote{Of course a field may be general (positive characteristic) field.
For applications to information science characteristic sometimes must be positive, e.g. for code theory or
cryptographically secure pseudo random number generator (Mersenne twister).
}.
\begin{defn}[Definition of linear/vector spaces]
Let $\bbR$ be a field of real numbers: a real number is also called a scaler.
A set $L$ is called a \upbf{linear space} if its elements have the following properties.
Elements $x, y, z \in L$ are vectors and $a, b \in \bbR$ are real numbers in the following expressions.
\begin{enumerate}
\item Associativity:
\begin{align}
\rbk{x + y} + z
=
x + \rbk{y + z}, \quad \forall x, y, z \in L.
\end{align}
\item Commutativity of sum:
\begin{align}
x + y = y + x, \quad \forall x, y \in L.
\end{align}
\item Existence of unit for sum: there is an element $0 \in L$ such that
\begin{align}
x + 0 = x, \quad \forall x \in L.
\end{align}
\item Existence of an inverse element for sum: for any $x \in L$ there is an element $y \in L$ such that
\begin{align}
x + y = 0
\end{align}
for the above $0$.
In fact we can prove the uniqueness of an inverse element.
\item Relation of scalers (real numbers) and vectors:
\begin{align}
a \cdot \rbk{x + y}
&=
a \cdot x + a \cdot y, \\
\rbk{ab} \cdot x
&=
a \cdot \rbk{b x}, \\
\rbk{a + b} \cdot x
&=
a \cdot x + b \cdot x,
\end{align}
\item Multiplication law for a scaler unit in $\bbR$:
\begin{align}
1 \cdot x = x, \quad \forall x \in L.
\end{align}
\end{enumerate}
\end{defn}
Important points are
\begin{enumerate}
\item vectors are summable and sum is commutative operation, and
\item vectors and scalers satisfy some multiplication laws.
\end{enumerate}
The above properties hold for geometric vectors in high school, of course.
Our purpose is that we consider vectors as algebraic objects and
we derive many interesting properties using (mainly) algebraic thinking!
\subsection{Examples of linear spaces}
\begin{enumerate}
\item The set of real numbers $\bbR$ itself with scaler $\bbR$.
\item The set of complex numbers $\bbC$ itself with scaler $\bbR$.
\item The set of complex numbers $\bbC$ itself with scaler $\bbC$.
\item A plane $\bbR^2$ with scaler $\bbR$.
\item A three dimensional space $\bbR^3$ with scaler $\bbR$.
\item Higher dimensional space $\bbR^d$ ($d \geq 4$) with scaler $\bbR$.
\item Some subsets of (numerical) sequence, e.g., $c_0$, $c_{\infty}$, $\ell^2$ with scaler $\bbR$.
\item Some subsets of function spaces, e.g., $C^k(\Omega)$, $L^p \rbk{\Omega}$, $H^k \rbk{\Omega}$ with scaler $\bbR$.
\item A set of linear operators with scaler $\bbR$.
\end{enumerate}
Today's main targets are introduction to the last three items and its relation to calculus.
\subsection{Examples of finite, but higher dimensional spaces than three\label{linear-algebra-and-calculus-8}}
We have many examples for higher dimensional objects in real world, e.g.,
\begin{enumerate}
\item (time evolution of) stock prices,
\item players' movement in soccer,
\item computerized control in robots.
\end{enumerate}
For (time evolution of) stock prices,
there are many listing companies and its time evolution is important in real world.
This evolution is mathematically representable in higher dimensional space picture.
Other examples are also characterized similarly.
These are related to analytical mechanics in physics.
Moreover analytical mechanics is closely related to geometry.
See \cite{KenjiFukaya1, NakamuraYamamoto1, NakamuraYamamoto2}.
\subsection{Function as a vector}
First recall the definition of vectors in three dimension:
letting $f = (f(1), f(2), f(3))$ and $g = (g(1), g(2), g(3))$ be three dimensional vectors
then their sum $f + g$ is defined by
\begin{align}
f + g
\defeq
\rbk{f\rbk{1} + g \rbk{1}, f(2) + g(2), f(3) + g(3)}.
\end{align}
I.e., sum of vectors is defined by component-wise.
Hence we also try to define a sum of functions as
\begin{align}
f + g
\defeq
\rbk{f(x) + g(x), f(y) + g(y), \dots}.
\end{align}
In short hand notation we define a sum by
\begin{align}
\rbk{f + g} (x)
\defeq
f(x) + g(x).
\end{align}
For scalar multiplication we set
\begin{align}
\rbk{\alpha f} (x)
\defeq
\alpha f (x).
\end{align}
Sum and scalar multiplication defined above satisfy the axioms of a linear space.
Thus we conclude a space of functions is a linear one\footnote{A function space becomes linear if images of functions belonging to it are linear.
Function spaces can be non-linear, e.g., images of functions belonging to it are manifolds or general sets.
That is, it depends on the algebraic structure of images of functions belonging to a function space
whether a function space has an algebraic structure.
}.
\subsection{Function spaces: examples of infinite dimensional spaces}
We have infinitely many infinite dimensional objects.
Examples are weather maps and wind direction maps.
Take a point in a world map,
and then there are infinitely many directions to blow wind at the point.
In the viewpoint of classical physics there are infinitely many space points,
and hence there are also infinitely many patterns how the wind blows
depending on directions and strength of the wind at each space point.
How do we represent this infinitely many probability of the wind in real world?
We use functions in several variables, $w(x,y,z,t) \in \bbR^3$.
A value of a function $w(x,y,z,t)$ at a space-time point $\rbk{x, y, z, t}$
represents a direction of wind and its strength (length of a vector).
We always use this type of mathematics in physics.
Furthermore there are infinitely many types of wind distribution,
i.e., we have infinitely many functions.
For systematic thinking it is useful to think where functions live in.
This is called a function space.
There are many useful function spaces and we select a proper space as the situation demands.
In this way, in mathematics we will encounter various types of spaces
other than a three dimensional geometric space.
We consider spaces where functions live and ones where spaces itself live.
\subsection{Dimension}
We use the terms, finite or infinite dimension, but we have not define the term, dimension.
Furthermore not all function spaces are infinite dimensional.
Firstly we define the concept of dimension and related concepts,
and then we consider the details after that.
\begin{defn}[Linear combinatin.]
Suppose $L$ is a linear space and $f_1, f_2, \dots, f_k \in L$.
For a set of real numbers $c_1, \dots, c_k \in \bbR$ vectors of the following form is called
a linear combination of vectors $f_1, f_2, \dots, f_k$.
\begin{align}
c_1 f_1 + c_2 f_2 + \cdots + c_k f_k
\end{align}
\end{defn}
\begin{defn}[Linearly dependent/indepedent]
Suppose $L$ is a linear space and $f_1, f_2, \dots, f_k \in L$.
Vectors $f_1, \dots, f_k$ are called linearly dependent if
the following expression holds for a set of real numbers $c_1, \dots, c_k \in \bbR$ one of which is not 0:
\begin{align}
c_1 f_1 + c_2 f_2 + \cdots + c_k f_k = 0.
\end{align}
We can say that ``we have a nontrivial linear combination."
Conversely the set of vectors $f_1, \dots, f_k$ is linearly independent
if the above expression holds only if $c_1 = c_2 = \cdots = c_k = 0$.
We can say that ``we have only trivial linear combination."
\end{defn}
\begin{defn}[finite/infinite dimension]
A linear space $L$ is called finite dimensional
if there is a set of vectors $f_1, f_2, \dots, f_k \in L$ with finite number
such that each vector in $L$ is expressed by linear combination of $f_1, f_2, \dots, f_k$.
A space $L$ is called infinite dimensional if $L$ is not a finite dimensional space.
\end{defn}
\begin{defn}[basis]
Suppose $L$ is a linear space and vectors $f_1, f_2, \dots, f_k$ are in $L$.
A set of vectors $f_1, \dots, f_k$ is called a basis of $L$ if it satisfies
the following 2 conditions.
\begin{enumerate}
\item Vectors $f_1, f_2, \dots, f_k$ are linearly independent.
\item Each vector in $L$ is expressed by a linear combination of $f_1, f_2, \dots, f_k$.
\end{enumerate}
\end{defn}
\begin{defn}[dimension]
The dimension of a (finite dimensional) linear space is
defined by the cardinal number of a set of basis.
\end{defn}
Firstly we explain the concept of dimension.
In geometric viewpoint in high-school
the number of dimension corresponds to the one
how much we need to specify the all points in a space.
That the dimension is 3 corresponds to the fact that
we need information, vertical, horizontal, and height to specify a point in space.
We see the dimension the degree of freedom.
In section \ref{linear-algebra-and-calculus-8} we take an example, the player's movement in soccer.
In this case the dimension of space is $22 \times 2 = 44$ for
there are 22 players and they move in a plane (play field).
Computerized control of robots is a little more complex:
the dimension of space roughly corresponds to the number of joints.
In fact we have constraints between them:
e.g. we cannot expand the arm if the length of it is 40 cm.
The dimension corresponds to the number of freedom with these constraints\footnote{In fact the space for computerized control for robots is curved so we can consider it as a manifold.
For details see the books on analytical mechanics \cite{NakamuraYamamoto1, NakamuraYamamoto2} or
the theory of dynamical system.
}.
We can get a point for the definition of a basis in plane.
Usually, if we take 3 vectors in plance,
we can express one of a vector by the other 2 vectors.
If the 3 vectors are colinear their linear combination expresses only the point on the line.
We must define a basis to exclude this situation.
Finally we remark the definition of infinite dimensional spaces.
We do not define it directly due to difficulty in defining algebraically infinite sum\footnote{We can consider algebraically infinite sum,
e.g, the ring of formal power series.
}.
If a linear combination for an infinite dimensional space is defined by $\sum_{k=1}^{\infty} c_k f_k$ naively,
we cannot take the numbers $(c_k)$ arbitrarily because we must consider the convergence of serieses in application to analysis.
Furthermore we consider only algebraic structure, do not consider other structures, i.e., convergence (topology).
At the last of this section we take examples.
The space of $\bbR^d$ is a $d$ dimensional linear space, of course.
We pick up examples of function spaces with ``basis''\footnote{When considering infinite dimensional spaces
we do not usually use basis, and
the concept of a complete (orthonormal) system is important
in a Hilbert space which we use frequently in quantum mechanics, e.g.
}.
\begin{ex}[a space of sequence]
The space of absolutely summable sequences $\ell^1$ is an infinite dimensional space.
Here we define vectors
\begin{align}
e_i
=
\rbk{0, \dots, 0, \dots, 1, \dots},
\end{align}
whose components are all 0 other than $i$-th component which is 1,
and then the set $\rbk{e_i}$ becomes a basis.
\end{ex}
\begin{ex}[A infinite dimensional function space]
The space of square integrable functions in the sense of Lebesgue $L^2 (- \pi, \pi)$ is infinite dimensional.
For a ``basis" we can take the set of functions $\rbk{e^{i k \pi}}_{k \in \bbZ}$.
This corresponds to the Fourier series expansion.
\end{ex}
\begin{ex}[A finite dimensional function space: the solution space for a differential equation]
Consider the following differential equation (equation of motion).
\begin{align}
m \frac{d^2 x}{dt^2}
=
-k x.
\end{align}
The general solution of the above is described by
\begin{align}
x(t)
=
A \sin \omega t + B \cos \omega t
=
A \sim \rbk{\omega t + \theta}, \quad \omega = \sqrt{k / m}
\end{align}
This solution space becomes linear: a linear combination of solutions also becomes a solution.
The dimension of the space is 2.
This corresponds to the degree of freedom of an amplitude $A$ and the initial phase $\theta$.
Note that not all function space is infinite dimensional.
Furthermore this teaches us that there is not always natural topology in linear spaces.
What is natural topologies for this solution space?
\end{ex}
\subsection{Linear maps, functionals}
We usually consider maps instead of functions in university mathematics.
In fact a map is just a function whose domain and range are general sets.
First we define a linear map and linear functional.
\begin{defn}
Assume $L_1$ and $L_2$ are linear spaces.
Then a function $F \colon L_1 \to L_2$ is called a \upbf{map or operator}.
If $F$ preserves linearity, i.e., $F$ has a property
\begin{align}
F \rbk{\alpha f + \beta g}
=
\alpha F(f) + \beta F(g), \quad \alpha, \beta \in \bbR, f, g \in L_1,
\end{align}
then an operator $F$ is called a \upbf{linear operator}.
If $L_2$ is $\bbR$ then $F$ is usually called a \upbf{functional}.
Furthermore $F$ is called a \upbf{linear functional} if it is linear.
\end{defn}
Here are some examples.
\begin{ex}
We show some examples.
\begin{enumerate}
\item Coordinate maps. Let $f = (f(1), f(2), \dots, f(d)) \in \bbR^d$.
We write a vector $f = (f_1, f_2, \dots, f_d)$ as $f = (f(1), f(2), \dots, f(d))$ for later use.
This is just a notational convention.
Then we get functionals by
\begin{align}
x_i \colon f \mapsto f(i).
\end{align}
This is a linear functional since this has a property
\begin{align}
x_i \rbk{\alpha f + \beta g}
=
\alpha x_i \rbk{f} + \beta x_i \rbk{g}.
\end{align}
\item Definite integrals: First we define a map $I$ as
\begin{align}
I \colon
f \mapsto \int_{\bbR^d} f(x) dx \in \bbR.
\end{align}
This is a linear functional since this has a property
\begin{align}
I \rbk{\alpha f + \beta g}
=
\alpha I \rbk{f} + \beta I \rbk{g}.
\end{align}
\item Another type of a definite integral:
\begin{align}
E \colon
f \mapsto \int_{\bbR^d} \rbk{\abs{\nabla f(x, t)}^2 + \rbk{\frac{\partial f(x, t)}{\partial t}}^2} dx. \label{linear-algebra-and-calculus-4}
\end{align}
This is a nonlinear functional.
In physics this $E$ is called an energy functional.
\item Differential operators: Define an operator as
\begin{align}
D \colon f \mapsto \frac{d}{dx} f.
\end{align}
This is a \textup{linear operator} since it satisfies
\begin{align}
D \rbk{\alpha f + \beta g}
=
\alpha Df + \beta Dg.
\end{align}
\end{enumerate}
\end{ex}
In this way we connects linear algebra with calculus.
For analysis of nonlinear functionals we also need various linear spaces and
some technique from linear algebra.
\subsection{Eigenvalues, eigenvectors}
These are not learned explicitly in high school.
However they sometimes appears in entrance exams.
\begin{defn}
Let $A$ be a linear operator on a linear space $L$.
A real number $\lambda$ resp. a vector $f$ are called an \upbf{eigenvalue} resp. \upbf{eigenvector}
if they satisfy
\begin{align}
A f = \lambda f, \quad
f \neq 0.
\end{align}
\end{defn}
Here are examples.
\begin{ex}
Let $D^2$ be a second order differential operator (this is linear) with respect to time and consider
\begin{align}
m D^2 x
=
-k x,
\end{align}
i.e.,
\begin{align}
m \frac{d^2 x (t)}{dt^2}
=
-k x(t).
\end{align}
This is an equation of motion for a spring in physics.
A solution (eigenvector) is
\begin{align}
x(t)
=
A \sin \rbk{\omega t + \theta}, \quad
\omega
=
\sqrt{\frac{k}{m}}.
\end{align}
We can write a solution using a celebrated Euler's formula:
\begin{align}
x(t)
=
A e^{i \rbk{\omega t + \theta}}.
\end{align}
Consideration of eigenvalues for a differential equation is somewhat difficult and we omit it.
See, e.g., \cite{HaimBrezis1, HaimBrezis2} for details.
\end{ex}
\subsection{Mathematical application of linear algebra}
There many branches related to linear algebra.
Here are some examples.
See also \cite{phasetr2}.
\begin{enumerate}
\item Theory of Lie group and its representation theory.
\item General algebra.
\item Algebraic geometry.
\item Analysis of differential equations.
\item Functional analysis.
\item Operator algebra.
\end{enumerate}
\subsection{Physical application}
There many branches related to linear algebra in physics, too.
See also \cite{phasetr2}.
For example, in quantum mechanics, one of the most fundamental physical theory,
linearity is important and fundamental.
We say ``a superposition principle valids for wave functions,''
and this ``superposition'' means linearity.
In high school we learn a superposition principle for wave.
This holds because our wave equation is linear in high school.
\subsection{Linear algebra and statistics}
We use statistics in many branches, including humanities and sociology.
E.g., natural language processing has many humanity and information theoretic elements.
This area needs broad knowledge including probability and statistics.
Interested readers should learn, e.g., principal component analysis.
\subsection{Linear algebra and computer/information science}
We have applications in computer science.
In numerical analysis we use linear algebra.
See the code theory, pseudo random numbers, image compression, or Google's
PageRank for real world application\footnote{See, e.g, my movies,
\href{http://www.nicovideo.jp/watch/sm7599426}{http://www.nicovideo.jp/watch/sm7599426}, \href{http://www.nicovideo.jp/watch/sm10684363}{http://www.nicovideo.jp/watch/sm10684363}.
}.
\section{Integration}
\subsection{Let's define inner products!}
In this talk we mainly consider real linear spaces, e.g., $\bbRd$.
You may consider complex linear spaces if you know complex numbers.
We assume you agree with the existence of higher dimensional spaces.
We want to define angles and length of vectors as in two or three dimensional ones.
One reason to consider them is application to physics.
There is a projection hypothesis in quantum mechanics:
this projection comes from orthogonal projection,
and it is just a shadow of objects in three dimensional objects when
one shine a light from above.
At first we consider how to define angles between infinite dimensional vectors,
especially, functions.
Take a look at the following inner product formula in high school.
\begin{align}
a \cdot b
=
\abs{a} \, \abs{b} \cos \theta.
\end{align}
We deform this:
\begin{align}
\cos \theta